| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finds1 | Structured version Visualization version GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| finds1.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds1.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds1.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds1.4 | ⊢ 𝜓 |
| finds1.5 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| finds1 | ⊢ (𝑥 ∈ ω → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . 2 ⊢ ∅ = ∅ | |
| 2 | finds1.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 3 | finds1.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 4 | finds1.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 5 | finds1.4 | . . . 4 ⊢ 𝜓 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (∅ = ∅ → 𝜓) |
| 7 | finds1.5 | . . . 4 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
| 8 | 7 | a1d 25 | . . 3 ⊢ (𝑦 ∈ ω → (∅ = ∅ → (𝜒 → 𝜃))) |
| 9 | 2, 3, 4, 6, 8 | finds2 7894 | . 2 ⊢ (𝑥 ∈ ω → (∅ = ∅ → 𝜑)) |
| 10 | 1, 9 | mpi 20 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∅c0 4308 suc csuc 6354 ωcom 7861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-om 7862 |
| This theorem is referenced by: findcard 9177 findcard2 9178 alephfplem3 10120 pwsdompw 10217 hsmexlem4 10443 |
| Copyright terms: Public domain | W3C validator |