![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finds1 | Structured version Visualization version GIF version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
finds1.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
finds1.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
finds1.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
finds1.4 | ⊢ 𝜓 |
finds1.5 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
finds1 | ⊢ (𝑥 ∈ ω → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ ∅ = ∅ | |
2 | finds1.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
3 | finds1.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
4 | finds1.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
5 | finds1.4 | . . . 4 ⊢ 𝜓 | |
6 | 5 | a1i 11 | . . 3 ⊢ (∅ = ∅ → 𝜓) |
7 | finds1.5 | . . . 4 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
8 | 7 | a1d 25 | . . 3 ⊢ (𝑦 ∈ ω → (∅ = ∅ → (𝜒 → 𝜃))) |
9 | 2, 3, 4, 6, 8 | finds2 7921 | . 2 ⊢ (𝑥 ∈ ω → (∅ = ∅ → 𝜑)) |
10 | 1, 9 | mpi 20 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∅c0 4339 suc csuc 6388 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-om 7888 |
This theorem is referenced by: findcard 9202 findcard2 9203 alephfplem3 10144 pwsdompw 10241 hsmexlem4 10467 |
Copyright terms: Public domain | W3C validator |