| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finds1 | Structured version Visualization version GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 22-Mar-2006.) |
| Ref | Expression |
|---|---|
| finds1.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds1.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds1.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds1.4 | ⊢ 𝜓 |
| finds1.5 | ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| finds1 | ⊢ (𝑥 ∈ ω → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . 2 ⊢ ∅ = ∅ | |
| 2 | finds1.1 | . . 3 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 3 | finds1.2 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 4 | finds1.3 | . . 3 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 5 | finds1.4 | . . . 4 ⊢ 𝜓 | |
| 6 | 5 | a1i 11 | . . 3 ⊢ (∅ = ∅ → 𝜓) |
| 7 | finds1.5 | . . . 4 ⊢ (𝑦 ∈ ω → (𝜒 → 𝜃)) | |
| 8 | 7 | a1d 25 | . . 3 ⊢ (𝑦 ∈ ω → (∅ = ∅ → (𝜒 → 𝜃))) |
| 9 | 2, 3, 4, 6, 8 | finds2 7834 | . 2 ⊢ (𝑥 ∈ ω → (∅ = ∅ → 𝜑)) |
| 10 | 1, 9 | mpi 20 | 1 ⊢ (𝑥 ∈ ω → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∅c0 4282 suc csuc 6313 ωcom 7802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-om 7803 |
| This theorem is referenced by: findcard 9080 findcard2 9081 alephfplem3 10004 pwsdompw 10101 hsmexlem4 10327 |
| Copyright terms: Public domain | W3C validator |