| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finds2 | Structured version Visualization version GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| finds2.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds2.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds2.4 | ⊢ (𝜏 → 𝜓) |
| finds2.5 | ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| finds2 | ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds2.4 | . . . . 5 ⊢ (𝜏 → 𝜓) | |
| 2 | 0ex 5262 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | finds2.1 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜓))) |
| 5 | 2, 4 | elab 3646 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜓)) |
| 6 | 1, 5 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} |
| 7 | finds2.5 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) | |
| 8 | 7 | a2d 29 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝜏 → 𝜒) → (𝜏 → 𝜃))) |
| 9 | vex 3451 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 10 | finds2.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 11 | 10 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜒))) |
| 12 | 9, 11 | elab 3646 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜒)) |
| 13 | 9 | sucex 7782 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
| 14 | finds2.3 | . . . . . . . 8 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜃))) |
| 16 | 13, 15 | elab 3646 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜃)) |
| 17 | 8, 12, 16 | 3imtr4g 296 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) |
| 18 | 17 | rgen 3046 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
| 19 | peano5 7869 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)}) | |
| 20 | 6, 18, 19 | mp2an 692 | . . 3 ⊢ ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)} |
| 21 | 20 | sseli 3942 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
| 22 | abid 2711 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜑)) | |
| 23 | 21, 22 | sylib 218 | 1 ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ⊆ wss 3914 ∅c0 4296 suc csuc 6334 ωcom 7842 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-tr 5215 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-om 7843 |
| This theorem is referenced by: finds1 7875 onnseq 8313 nnacl 8575 nnmcl 8576 nnecl 8577 nnacom 8581 nnaass 8586 nndi 8587 nnmass 8588 nnmsucr 8589 nnmcom 8590 nnmordi 8595 omsmolem 8621 isinf 9207 isinfOLD 9208 unblem2 9240 fiint 9277 fiintOLD 9278 dffi3 9382 card2inf 9508 cantnfle 9624 cantnflt 9625 cantnflem1 9642 cnfcom 9653 trcl 9681 fseqenlem1 9977 nnadju 10151 infpssrlem3 10258 fin23lem26 10278 axdc3lem2 10404 axdc4lem 10408 axdclem2 10473 wunr1om 10672 wuncval2 10700 tskr1om 10720 grothomex 10782 peano5nni 12189 precsexlem6 28114 precsexlem7 28115 noseqind 28186 om2noseqlt 28193 neibastop2lem 36348 finxpreclem6 37384 domalom 37392 oaabsb 43283 |
| Copyright terms: Public domain | W3C validator |