| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finds2 | Structured version Visualization version GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| finds2.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds2.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds2.4 | ⊢ (𝜏 → 𝜓) |
| finds2.5 | ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| finds2 | ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds2.4 | . . . . 5 ⊢ (𝜏 → 𝜓) | |
| 2 | 0ex 5246 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | finds2.1 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜓))) |
| 5 | 2, 4 | elab 3635 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜓)) |
| 6 | 1, 5 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} |
| 7 | finds2.5 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) | |
| 8 | 7 | a2d 29 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝜏 → 𝜒) → (𝜏 → 𝜃))) |
| 9 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 10 | finds2.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 11 | 10 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜒))) |
| 12 | 9, 11 | elab 3635 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜒)) |
| 13 | 9 | sucex 7742 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
| 14 | finds2.3 | . . . . . . . 8 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜃))) |
| 16 | 13, 15 | elab 3635 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜃)) |
| 17 | 8, 12, 16 | 3imtr4g 296 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) |
| 18 | 17 | rgen 3046 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
| 19 | peano5 7826 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)}) | |
| 20 | 6, 18, 19 | mp2an 692 | . . 3 ⊢ ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)} |
| 21 | 20 | sseli 3931 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
| 22 | abid 2711 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜑)) | |
| 23 | 21, 22 | sylib 218 | 1 ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ⊆ wss 3903 ∅c0 4284 suc csuc 6309 ωcom 7799 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-tr 5200 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-om 7800 |
| This theorem is referenced by: finds1 7832 onnseq 8267 nnacl 8529 nnmcl 8530 nnecl 8531 nnacom 8535 nnaass 8540 nndi 8541 nnmass 8542 nnmsucr 8543 nnmcom 8544 nnmordi 8549 omsmolem 8575 isinf 9154 unblem2 9182 fiint 9216 fiintOLD 9217 dffi3 9321 card2inf 9447 cantnfle 9567 cantnflt 9568 cantnflem1 9585 cnfcom 9596 trcl 9624 fseqenlem1 9918 nnadju 10092 infpssrlem3 10199 fin23lem26 10219 axdc3lem2 10345 axdc4lem 10349 axdclem2 10414 wunr1om 10613 wuncval2 10641 tskr1om 10661 grothomex 10723 peano5nni 12131 precsexlem6 28119 precsexlem7 28120 noseqind 28191 om2noseqlt 28198 neibastop2lem 36334 finxpreclem6 37370 domalom 37378 oaabsb 43267 |
| Copyright terms: Public domain | W3C validator |