MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds2 Structured version   Visualization version   GIF version

Theorem finds2 7938
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1 (𝑥 = ∅ → (𝜑𝜓))
finds2.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds2.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds2.4 (𝜏𝜓)
finds2.5 (𝑦 ∈ ω → (𝜏 → (𝜒𝜃)))
Assertion
Ref Expression
finds2 (𝑥 ∈ ω → (𝜏𝜑))
Distinct variable groups:   𝑥,𝑦,𝜏   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5 (𝜏𝜓)
2 0ex 5325 . . . . . 6 ∅ ∈ V
3 finds2.1 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜓))
43imbi2d 340 . . . . . 6 (𝑥 = ∅ → ((𝜏𝜑) ↔ (𝜏𝜓)))
52, 4elab 3694 . . . . 5 (∅ ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜓))
61, 5mpbir 231 . . . 4 ∅ ∈ {𝑥 ∣ (𝜏𝜑)}
7 finds2.5 . . . . . . 7 (𝑦 ∈ ω → (𝜏 → (𝜒𝜃)))
87a2d 29 . . . . . 6 (𝑦 ∈ ω → ((𝜏𝜒) → (𝜏𝜃)))
9 vex 3492 . . . . . . 7 𝑦 ∈ V
10 finds2.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1110imbi2d 340 . . . . . . 7 (𝑥 = 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜒)))
129, 11elab 3694 . . . . . 6 (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜒))
139sucex 7842 . . . . . . 7 suc 𝑦 ∈ V
14 finds2.3 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝜑𝜃))
1514imbi2d 340 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜃)))
1613, 15elab 3694 . . . . . 6 (suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜃))
178, 12, 163imtr4g 296 . . . . 5 (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)}))
1817rgen 3069 . . . 4 𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)})
19 peano5 7932 . . . 4 ((∅ ∈ {𝑥 ∣ (𝜏𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏𝜑)})
206, 18, 19mp2an 691 . . 3 ω ⊆ {𝑥 ∣ (𝜏𝜑)}
2120sseli 4004 . 2 (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏𝜑)})
22 abid 2721 . 2 (𝑥 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜑))
2321, 22sylib 218 1 (𝑥 ∈ ω → (𝜏𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {cab 2717  wral 3067  wss 3976  c0 4352  suc csuc 6397  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-om 7904
This theorem is referenced by:  finds1  7939  onnseq  8400  nnacl  8667  nnmcl  8668  nnecl  8669  nnacom  8673  nnaass  8678  nndi  8679  nnmass  8680  nnmsucr  8681  nnmcom  8682  nnmordi  8687  omsmolem  8713  isinf  9323  isinfOLD  9324  unblem2  9357  fiint  9394  fiintOLD  9395  dffi3  9500  card2inf  9624  cantnfle  9740  cantnflt  9741  cantnflem1  9758  cnfcom  9769  trcl  9797  fseqenlem1  10093  nnadju  10267  infpssrlem3  10374  fin23lem26  10394  axdc3lem2  10520  axdc4lem  10524  axdclem2  10589  wunr1om  10788  wuncval2  10816  tskr1om  10836  grothomex  10898  peano5nni  12296  precsexlem6  28254  precsexlem7  28255  noseqind  28316  om2noseqlt  28323  neibastop2lem  36326  finxpreclem6  37362  domalom  37370  oaabsb  43256
  Copyright terms: Public domain W3C validator