![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finds2 | Structured version Visualization version GIF version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
finds2.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
finds2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
finds2.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
finds2.4 | ⊢ (𝜏 → 𝜓) |
finds2.5 | ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
finds2 | ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds2.4 | . . . . 5 ⊢ (𝜏 → 𝜓) | |
2 | 0ex 5313 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | finds2.1 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
4 | 3 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜓))) |
5 | 2, 4 | elab 3681 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜓)) |
6 | 1, 5 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} |
7 | finds2.5 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) | |
8 | 7 | a2d 29 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝜏 → 𝜒) → (𝜏 → 𝜃))) |
9 | vex 3482 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
10 | finds2.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
11 | 10 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜒))) |
12 | 9, 11 | elab 3681 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜒)) |
13 | 9 | sucex 7826 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
14 | finds2.3 | . . . . . . . 8 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜃))) |
16 | 13, 15 | elab 3681 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜃)) |
17 | 8, 12, 16 | 3imtr4g 296 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) |
18 | 17 | rgen 3061 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
19 | peano5 7916 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)}) | |
20 | 6, 18, 19 | mp2an 692 | . . 3 ⊢ ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)} |
21 | 20 | sseli 3991 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
22 | abid 2716 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜑)) | |
23 | 21, 22 | sylib 218 | 1 ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ⊆ wss 3963 ∅c0 4339 suc csuc 6388 ωcom 7887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-om 7888 |
This theorem is referenced by: finds1 7922 onnseq 8383 nnacl 8648 nnmcl 8649 nnecl 8650 nnacom 8654 nnaass 8659 nndi 8660 nnmass 8661 nnmsucr 8662 nnmcom 8663 nnmordi 8668 omsmolem 8694 isinf 9294 isinfOLD 9295 unblem2 9327 fiint 9364 fiintOLD 9365 dffi3 9469 card2inf 9593 cantnfle 9709 cantnflt 9710 cantnflem1 9727 cnfcom 9738 trcl 9766 fseqenlem1 10062 nnadju 10236 infpssrlem3 10343 fin23lem26 10363 axdc3lem2 10489 axdc4lem 10493 axdclem2 10558 wunr1om 10757 wuncval2 10785 tskr1om 10805 grothomex 10867 peano5nni 12267 precsexlem6 28251 precsexlem7 28252 noseqind 28313 om2noseqlt 28320 neibastop2lem 36343 finxpreclem6 37379 domalom 37387 oaabsb 43284 |
Copyright terms: Public domain | W3C validator |