MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  finds2 Structured version   Visualization version   GIF version

Theorem finds2 7747
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.)
Hypotheses
Ref Expression
finds2.1 (𝑥 = ∅ → (𝜑𝜓))
finds2.2 (𝑥 = 𝑦 → (𝜑𝜒))
finds2.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
finds2.4 (𝜏𝜓)
finds2.5 (𝑦 ∈ ω → (𝜏 → (𝜒𝜃)))
Assertion
Ref Expression
finds2 (𝑥 ∈ ω → (𝜏𝜑))
Distinct variable groups:   𝑥,𝑦,𝜏   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)

Proof of Theorem finds2
StepHypRef Expression
1 finds2.4 . . . . 5 (𝜏𝜓)
2 0ex 5231 . . . . . 6 ∅ ∈ V
3 finds2.1 . . . . . . 7 (𝑥 = ∅ → (𝜑𝜓))
43imbi2d 341 . . . . . 6 (𝑥 = ∅ → ((𝜏𝜑) ↔ (𝜏𝜓)))
52, 4elab 3609 . . . . 5 (∅ ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜓))
61, 5mpbir 230 . . . 4 ∅ ∈ {𝑥 ∣ (𝜏𝜑)}
7 finds2.5 . . . . . . 7 (𝑦 ∈ ω → (𝜏 → (𝜒𝜃)))
87a2d 29 . . . . . 6 (𝑦 ∈ ω → ((𝜏𝜒) → (𝜏𝜃)))
9 vex 3436 . . . . . . 7 𝑦 ∈ V
10 finds2.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1110imbi2d 341 . . . . . . 7 (𝑥 = 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜒)))
129, 11elab 3609 . . . . . 6 (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜒))
139sucex 7656 . . . . . . 7 suc 𝑦 ∈ V
14 finds2.3 . . . . . . . 8 (𝑥 = suc 𝑦 → (𝜑𝜃))
1514imbi2d 341 . . . . . . 7 (𝑥 = suc 𝑦 → ((𝜏𝜑) ↔ (𝜏𝜃)))
1613, 15elab 3609 . . . . . 6 (suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜃))
178, 12, 163imtr4g 296 . . . . 5 (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)}))
1817rgen 3074 . . . 4 𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)})
19 peano5 7740 . . . 4 ((∅ ∈ {𝑥 ∣ (𝜏𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏𝜑)})
206, 18, 19mp2an 689 . . 3 ω ⊆ {𝑥 ∣ (𝜏𝜑)}
2120sseli 3917 . 2 (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏𝜑)})
22 abid 2719 . 2 (𝑥 ∈ {𝑥 ∣ (𝜏𝜑)} ↔ (𝜏𝜑))
2321, 22sylib 217 1 (𝑥 ∈ ω → (𝜏𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  {cab 2715  wral 3064  wss 3887  c0 4256  suc csuc 6268  ωcom 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-om 7713
This theorem is referenced by:  finds1  7748  onnseq  8175  nnacl  8442  nnmcl  8443  nnecl  8444  nnacom  8448  nnaass  8453  nndi  8454  nnmass  8455  nnmsucr  8456  nnmcom  8457  nnmordi  8462  omsmolem  8487  isinf  9036  unblem2  9067  fiint  9091  dffi3  9190  card2inf  9314  cantnfle  9429  cantnflt  9430  cantnflem1  9447  cnfcom  9458  trcl  9486  fseqenlem1  9780  nnadju  9953  infpssrlem3  10061  fin23lem26  10081  axdc3lem2  10207  axdc4lem  10211  axdclem2  10276  wunr1om  10475  wuncval2  10503  tskr1om  10523  grothomex  10585  peano5nni  11976  neibastop2lem  34549  finxpreclem6  35567  domalom  35575
  Copyright terms: Public domain W3C validator