![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > finds2 | Structured version Visualization version GIF version |
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
Ref | Expression |
---|---|
finds2.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
finds2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
finds2.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
finds2.4 | ⊢ (𝜏 → 𝜓) |
finds2.5 | ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
finds2 | ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | finds2.4 | . . . . 5 ⊢ (𝜏 → 𝜓) | |
2 | 0ex 5307 | . . . . . 6 ⊢ ∅ ∈ V | |
3 | finds2.1 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
4 | 3 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜓))) |
5 | 2, 4 | elab 3668 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜓)) |
6 | 1, 5 | mpbir 230 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} |
7 | finds2.5 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) | |
8 | 7 | a2d 29 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝜏 → 𝜒) → (𝜏 → 𝜃))) |
9 | vex 3478 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
10 | finds2.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
11 | 10 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜒))) |
12 | 9, 11 | elab 3668 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜒)) |
13 | 9 | sucex 7796 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
14 | finds2.3 | . . . . . . . 8 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜃))) |
16 | 13, 15 | elab 3668 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜃)) |
17 | 8, 12, 16 | 3imtr4g 295 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) |
18 | 17 | rgen 3063 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
19 | peano5 7886 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)}) | |
20 | 6, 18, 19 | mp2an 690 | . . 3 ⊢ ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)} |
21 | 20 | sseli 3978 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
22 | abid 2713 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜑)) | |
23 | 21, 22 | sylib 217 | 1 ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cab 2709 ∀wral 3061 ⊆ wss 3948 ∅c0 4322 suc csuc 6366 ωcom 7857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-om 7858 |
This theorem is referenced by: finds1 7894 onnseq 8346 nnacl 8613 nnmcl 8614 nnecl 8615 nnacom 8619 nnaass 8624 nndi 8625 nnmass 8626 nnmsucr 8627 nnmcom 8628 nnmordi 8633 omsmolem 8658 isinf 9262 isinfOLD 9263 unblem2 9298 fiint 9326 dffi3 9428 card2inf 9552 cantnfle 9668 cantnflt 9669 cantnflem1 9686 cnfcom 9697 trcl 9725 fseqenlem1 10021 nnadju 10194 infpssrlem3 10302 fin23lem26 10322 axdc3lem2 10448 axdc4lem 10452 axdclem2 10517 wunr1om 10716 wuncval2 10744 tskr1om 10764 grothomex 10826 peano5nni 12219 precsexlem6 27885 precsexlem7 27886 peano5n0s 27923 neibastop2lem 35548 finxpreclem6 36580 domalom 36588 oaabsb 42346 |
Copyright terms: Public domain | W3C validator |