| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > finds2 | Structured version Visualization version GIF version | ||
| Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first three hypotheses establish the substitutions we need. The last two are the basis and the induction step. Theorem Schema 22 of [Suppes] p. 136. (Contributed by NM, 29-Nov-2002.) |
| Ref | Expression |
|---|---|
| finds2.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| finds2.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| finds2.3 | ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) |
| finds2.4 | ⊢ (𝜏 → 𝜓) |
| finds2.5 | ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| finds2 | ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | finds2.4 | . . . . 5 ⊢ (𝜏 → 𝜓) | |
| 2 | 0ex 5240 | . . . . . 6 ⊢ ∅ ∈ V | |
| 3 | finds2.1 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | imbi2d 340 | . . . . . 6 ⊢ (𝑥 = ∅ → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜓))) |
| 5 | 2, 4 | elab 3630 | . . . . 5 ⊢ (∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜓)) |
| 6 | 1, 5 | mpbir 231 | . . . 4 ⊢ ∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} |
| 7 | finds2.5 | . . . . . . 7 ⊢ (𝑦 ∈ ω → (𝜏 → (𝜒 → 𝜃))) | |
| 8 | 7 | a2d 29 | . . . . . 6 ⊢ (𝑦 ∈ ω → ((𝜏 → 𝜒) → (𝜏 → 𝜃))) |
| 9 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 10 | finds2.2 | . . . . . . . 8 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 11 | 10 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜒))) |
| 12 | 9, 11 | elab 3630 | . . . . . 6 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜒)) |
| 13 | 9 | sucex 7734 | . . . . . . 7 ⊢ suc 𝑦 ∈ V |
| 14 | finds2.3 | . . . . . . . 8 ⊢ (𝑥 = suc 𝑦 → (𝜑 ↔ 𝜃)) | |
| 15 | 14 | imbi2d 340 | . . . . . . 7 ⊢ (𝑥 = suc 𝑦 → ((𝜏 → 𝜑) ↔ (𝜏 → 𝜃))) |
| 16 | 13, 15 | elab 3630 | . . . . . 6 ⊢ (suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜃)) |
| 17 | 8, 12, 16 | 3imtr4g 296 | . . . . 5 ⊢ (𝑦 ∈ ω → (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) |
| 18 | 17 | rgen 3049 | . . . 4 ⊢ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
| 19 | peano5 7818 | . . . 4 ⊢ ((∅ ∈ {𝑥 ∣ (𝜏 → 𝜑)} ∧ ∀𝑦 ∈ ω (𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)} → suc 𝑦 ∈ {𝑥 ∣ (𝜏 → 𝜑)})) → ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)}) | |
| 20 | 6, 18, 19 | mp2an 692 | . . 3 ⊢ ω ⊆ {𝑥 ∣ (𝜏 → 𝜑)} |
| 21 | 20 | sseli 3925 | . 2 ⊢ (𝑥 ∈ ω → 𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)}) |
| 22 | abid 2713 | . 2 ⊢ (𝑥 ∈ {𝑥 ∣ (𝜏 → 𝜑)} ↔ (𝜏 → 𝜑)) | |
| 23 | 21, 22 | sylib 218 | 1 ⊢ (𝑥 ∈ ω → (𝜏 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ⊆ wss 3897 ∅c0 4278 suc csuc 6303 ωcom 7791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-om 7792 |
| This theorem is referenced by: finds1 7824 onnseq 8259 nnacl 8521 nnmcl 8522 nnecl 8523 nnacom 8527 nnaass 8532 nndi 8533 nnmass 8534 nnmsucr 8535 nnmcom 8536 nnmordi 8541 omsmolem 8567 isinf 9144 unblem2 9172 fiint 9206 dffi3 9310 card2inf 9436 cantnfle 9556 cantnflt 9557 cantnflem1 9574 cnfcom 9585 trcl 9613 fseqenlem1 9910 nnadju 10084 infpssrlem3 10191 fin23lem26 10211 axdc3lem2 10337 axdc4lem 10341 axdclem2 10406 wunr1om 10605 wuncval2 10633 tskr1om 10653 grothomex 10715 peano5nni 12123 precsexlem6 28145 precsexlem7 28146 noseqind 28217 om2noseqlt 28224 neibastop2lem 36394 finxpreclem6 37430 domalom 37438 oaabsb 43327 |
| Copyright terms: Public domain | W3C validator |