MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem4 Structured version   Visualization version   GIF version

Theorem hsmexlem4 10498
Description: Lemma for hsmex 10501. The core induction, establishing bounds on the order types of iterated unions of the initial set. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem4 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem4
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hsmexlem4.o . . . . . . 7 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
2 fveq2 6920 . . . . . . . . 9 (𝑐 = ∅ → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘∅))
32imaeq2d 6089 . . . . . . . 8 (𝑐 = ∅ → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)))
4 oieq2 9582 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
53, 4syl 17 . . . . . . 7 (𝑐 = ∅ → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
61, 5eqtrid 2792 . . . . . 6 (𝑐 = ∅ → 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
76dmeqd 5930 . . . . 5 (𝑐 = ∅ → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
8 fveq2 6920 . . . . 5 (𝑐 = ∅ → (𝐻𝑐) = (𝐻‘∅))
97, 8eleq12d 2838 . . . 4 (𝑐 = ∅ → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
109ralbidv 3184 . . 3 (𝑐 = ∅ → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
11 fveq2 6920 . . . . . . . . 9 (𝑐 = 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘𝑒))
1211imaeq2d 6089 . . . . . . . 8 (𝑐 = 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)))
13 oieq2 9582 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1412, 13syl 17 . . . . . . 7 (𝑐 = 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
151, 14eqtrid 2792 . . . . . 6 (𝑐 = 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1615dmeqd 5930 . . . . 5 (𝑐 = 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
17 fveq2 6920 . . . . 5 (𝑐 = 𝑒 → (𝐻𝑐) = (𝐻𝑒))
1816, 17eleq12d 2838 . . . 4 (𝑐 = 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
1918ralbidv 3184 . . 3 (𝑐 = 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
20 fveq2 6920 . . . . . . . . 9 (𝑐 = suc 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘suc 𝑒))
2120imaeq2d 6089 . . . . . . . 8 (𝑐 = suc 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)))
22 oieq2 9582 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2321, 22syl 17 . . . . . . 7 (𝑐 = suc 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
241, 23eqtrid 2792 . . . . . 6 (𝑐 = suc 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2524dmeqd 5930 . . . . 5 (𝑐 = suc 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
26 fveq2 6920 . . . . 5 (𝑐 = suc 𝑒 → (𝐻𝑐) = (𝐻‘suc 𝑒))
2725, 26eleq12d 2838 . . . 4 (𝑐 = suc 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
2827ralbidv 3184 . . 3 (𝑐 = suc 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
29 imassrn 6100 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) ⊆ ran rank
30 rankf 9863 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
31 frn 6754 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
3230, 31ax-mp 5 . . . . . . 7 ran rank ⊆ On
3329, 32sstri 4018 . . . . . 6 (rank “ ((𝑈𝑑)‘∅)) ⊆ On
34 hsmexlem4.u . . . . . . . . . 10 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
3534ituni0 10487 . . . . . . . . 9 (𝑑 ∈ V → ((𝑈𝑑)‘∅) = 𝑑)
3635elv 3493 . . . . . . . 8 ((𝑈𝑑)‘∅) = 𝑑
3736imaeq2i 6087 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) = (rank “ 𝑑)
38 ffun 6750 . . . . . . . . . 10 (rank: (𝑅1 “ On)⟶On → Fun rank)
3930, 38ax-mp 5 . . . . . . . . 9 Fun rank
40 vex 3492 . . . . . . . . 9 𝑑 ∈ V
41 wdomimag 9656 . . . . . . . . 9 ((Fun rank ∧ 𝑑 ∈ V) → (rank “ 𝑑) ≼* 𝑑)
4239, 40, 41mp2an 691 . . . . . . . 8 (rank “ 𝑑) ≼* 𝑑
43 sneq 4658 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → {𝑎} = {𝑑})
4443fveq2d 6924 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (TC‘{𝑎}) = (TC‘{𝑑}))
4544raleqdv 3334 . . . . . . . . . . 11 (𝑎 = 𝑑 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
46 hsmexlem4.s . . . . . . . . . . 11 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
4745, 46elrab2 3711 . . . . . . . . . 10 (𝑑𝑆 ↔ (𝑑 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
4847simprbi 496 . . . . . . . . 9 (𝑑𝑆 → ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋)
49 vsnex 5449 . . . . . . . . . . . 12 {𝑑} ∈ V
50 tcid 9808 . . . . . . . . . . . 12 ({𝑑} ∈ V → {𝑑} ⊆ (TC‘{𝑑}))
5149, 50ax-mp 5 . . . . . . . . . . 11 {𝑑} ⊆ (TC‘{𝑑})
52 vsnid 4685 . . . . . . . . . . 11 𝑑 ∈ {𝑑}
5351, 52sselii 4005 . . . . . . . . . 10 𝑑 ∈ (TC‘{𝑑})
54 breq1 5169 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏𝑋𝑑𝑋))
5554rspcv 3631 . . . . . . . . . 10 (𝑑 ∈ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋))
5653, 55ax-mp 5 . . . . . . . . 9 (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋)
57 domwdom 9643 . . . . . . . . 9 (𝑑𝑋𝑑* 𝑋)
5848, 56, 573syl 18 . . . . . . . 8 (𝑑𝑆𝑑* 𝑋)
59 wdomtr 9644 . . . . . . . 8 (((rank “ 𝑑) ≼* 𝑑𝑑* 𝑋) → (rank “ 𝑑) ≼* 𝑋)
6042, 58, 59sylancr 586 . . . . . . 7 (𝑑𝑆 → (rank “ 𝑑) ≼* 𝑋)
6137, 60eqbrtrid 5201 . . . . . 6 (𝑑𝑆 → (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋)
62 eqid 2740 . . . . . . 7 OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅)))
6362hsmexlem1 10495 . . . . . 6 (((rank “ ((𝑈𝑑)‘∅)) ⊆ On ∧ (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
6433, 61, 63sylancr 586 . . . . 5 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
65 hsmexlem4.h . . . . . 6 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
6665hsmexlem7 10492 . . . . 5 (𝐻‘∅) = (har‘𝒫 𝑋)
6764, 66eleqtrrdi 2855 . . . 4 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅))
6867rgen 3069 . . 3 𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)
69 nfra1 3290 . . . . . 6 𝑑𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)
70 nfv 1913 . . . . . 6 𝑑 𝑒 ∈ ω
7169, 70nfan 1898 . . . . 5 𝑑(∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω)
7234ituniiun 10491 . . . . . . . . . . . . 13 (𝑑 ∈ V → ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒))
7372elv 3493 . . . . . . . . . . . 12 ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒)
7473imaeq2i 6087 . . . . . . . . . . 11 (rank “ ((𝑈𝑑)‘suc 𝑒)) = (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒))
75 imaiun 7282 . . . . . . . . . . 11 (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
7674, 75eqtri 2768 . . . . . . . . . 10 (rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
77 oieq2 9582 . . . . . . . . . 10 ((rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))))
7876, 77ax-mp 5 . . . . . . . . 9 OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
7978dmeqi 5929 . . . . . . . 8 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
8058ad2antll 728 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → 𝑑* 𝑋)
8165hsmexlem9 10494 . . . . . . . . . 10 (𝑒 ∈ ω → (𝐻𝑒) ∈ On)
8281ad2antrl 727 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻𝑒) ∈ On)
83 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑓 → (𝑈𝑑) = (𝑈𝑓))
8483fveq1d 6922 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑓 → ((𝑈𝑑)‘𝑒) = ((𝑈𝑓)‘𝑒))
8584imaeq2d 6089 . . . . . . . . . . . . . . 15 (𝑑 = 𝑓 → (rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)))
86 oieq2 9582 . . . . . . . . . . . . . . 15 ((rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8785, 86syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑓 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8887dmeqd 5930 . . . . . . . . . . . . 13 (𝑑 = 𝑓 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8988eleq1d 2829 . . . . . . . . . . . 12 (𝑑 = 𝑓 → (dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ↔ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
90 simpll 766 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒))
9146ssrab3 4105 . . . . . . . . . . . . . . . . . 18 𝑆 (𝑅1 “ On)
9291sseli 4004 . . . . . . . . . . . . . . . . 17 (𝑑𝑆𝑑 (𝑅1 “ On))
93 r1elssi 9874 . . . . . . . . . . . . . . . . 17 (𝑑 (𝑅1 “ On) → 𝑑 (𝑅1 “ On))
9492, 93syl 17 . . . . . . . . . . . . . . . 16 (𝑑𝑆𝑑 (𝑅1 “ On))
9594sselda 4008 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → 𝑓 (𝑅1 “ On))
96 snssi 4833 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑑 → {𝑓} ⊆ 𝑑)
9740tcss 9813 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ 𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9896, 97syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9949tcel 9814 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ {𝑑} → (TC‘𝑑) ⊆ (TC‘{𝑑}))
10052, 99mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘𝑑) ⊆ (TC‘{𝑑}))
10198, 100sstrd 4019 . . . . . . . . . . . . . . . . 17 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘{𝑑}))
102 ssralv 4077 . . . . . . . . . . . . . . . . 17 ((TC‘{𝑓}) ⊆ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
103101, 102syl 17 . . . . . . . . . . . . . . . 16 (𝑓𝑑 → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
10448, 103mpan9 506 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋)
105 sneq 4658 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑓 → {𝑎} = {𝑓})
106105fveq2d 6924 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑓 → (TC‘{𝑎}) = (TC‘{𝑓}))
107106raleqdv 3334 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑓 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
108107, 46elrab2 3711 . . . . . . . . . . . . . . 15 (𝑓𝑆 ↔ (𝑓 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
10995, 104, 108sylanbrc 582 . . . . . . . . . . . . . 14 ((𝑑𝑆𝑓𝑑) → 𝑓𝑆)
110109adantll 713 . . . . . . . . . . . . 13 (((𝑒 ∈ ω ∧ 𝑑𝑆) ∧ 𝑓𝑑) → 𝑓𝑆)
111110adantll 713 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → 𝑓𝑆)
11289, 90, 111rspcdva 3636 . . . . . . . . . . 11 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))
113 imassrn 6100 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ ran rank
114113, 32sstri 4018 . . . . . . . . . . . 12 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On
115 fvex 6933 . . . . . . . . . . . . . . 15 ((𝑈𝑓)‘𝑒) ∈ V
116115funimaex 6666 . . . . . . . . . . . . . 14 (Fun rank → (rank “ ((𝑈𝑓)‘𝑒)) ∈ V)
11739, 116ax-mp 5 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ∈ V
118117elpw 4626 . . . . . . . . . . . 12 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On)
119114, 118mpbir 231 . . . . . . . . . . 11 (rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On
120112, 119jctil 519 . . . . . . . . . 10 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
121120ralrimiva 3152 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
122 eqid 2740 . . . . . . . . . 10 OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒)))
123 eqid 2740 . . . . . . . . . 10 OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
124122, 123hsmexlem3 10497 . . . . . . . . 9 (((𝑑* 𝑋 ∧ (𝐻𝑒) ∈ On) ∧ ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12580, 82, 121, 124syl21anc 837 . . . . . . . 8 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12679, 125eqeltrid 2848 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12765hsmexlem8 10493 . . . . . . . 8 (𝑒 ∈ ω → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
128127ad2antrl 727 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
129126, 128eleqtrrd 2847 . . . . . 6 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
130129expr 456 . . . . 5 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13171, 130ralrimi 3263 . . . 4 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
132131expcom 413 . . 3 (𝑒 ∈ ω → (∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13310, 19, 28, 68, 132finds1 7939 . 2 (𝑐 ∈ ω → ∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐))
134133r19.21bi 3257 1 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  Vcvv 3488  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249   E cep 5598   × cxp 5698  dom cdm 5700  ran crn 5701  cres 5702  cima 5703  Oncon0 6395  suc csuc 6397  Fun wfun 6567  wf 6569  cfv 6573  ωcom 7903  reccrdg 8465  cdom 9001  OrdIsocoi 9578  harchar 9625  * cwdom 9633  TCctc 9805  𝑅1cr1 9831  rankcrnk 9832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-smo 8402  df-recs 8427  df-rdg 8466  df-en 9004  df-dom 9005  df-sdom 9006  df-oi 9579  df-har 9626  df-wdom 9634  df-tc 9806  df-r1 9833  df-rank 9834
This theorem is referenced by:  hsmexlem5  10499
  Copyright terms: Public domain W3C validator