MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem4 Structured version   Visualization version   GIF version

Theorem hsmexlem4 10389
Description: Lemma for hsmex 10392. The core induction, establishing bounds on the order types of iterated unions of the initial set. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem4 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem4
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hsmexlem4.o . . . . . . 7 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
2 fveq2 6861 . . . . . . . . 9 (𝑐 = ∅ → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘∅))
32imaeq2d 6034 . . . . . . . 8 (𝑐 = ∅ → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)))
4 oieq2 9473 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
53, 4syl 17 . . . . . . 7 (𝑐 = ∅ → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
61, 5eqtrid 2777 . . . . . 6 (𝑐 = ∅ → 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
76dmeqd 5872 . . . . 5 (𝑐 = ∅ → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
8 fveq2 6861 . . . . 5 (𝑐 = ∅ → (𝐻𝑐) = (𝐻‘∅))
97, 8eleq12d 2823 . . . 4 (𝑐 = ∅ → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
109ralbidv 3157 . . 3 (𝑐 = ∅ → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
11 fveq2 6861 . . . . . . . . 9 (𝑐 = 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘𝑒))
1211imaeq2d 6034 . . . . . . . 8 (𝑐 = 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)))
13 oieq2 9473 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1412, 13syl 17 . . . . . . 7 (𝑐 = 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
151, 14eqtrid 2777 . . . . . 6 (𝑐 = 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1615dmeqd 5872 . . . . 5 (𝑐 = 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
17 fveq2 6861 . . . . 5 (𝑐 = 𝑒 → (𝐻𝑐) = (𝐻𝑒))
1816, 17eleq12d 2823 . . . 4 (𝑐 = 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
1918ralbidv 3157 . . 3 (𝑐 = 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
20 fveq2 6861 . . . . . . . . 9 (𝑐 = suc 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘suc 𝑒))
2120imaeq2d 6034 . . . . . . . 8 (𝑐 = suc 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)))
22 oieq2 9473 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2321, 22syl 17 . . . . . . 7 (𝑐 = suc 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
241, 23eqtrid 2777 . . . . . 6 (𝑐 = suc 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2524dmeqd 5872 . . . . 5 (𝑐 = suc 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
26 fveq2 6861 . . . . 5 (𝑐 = suc 𝑒 → (𝐻𝑐) = (𝐻‘suc 𝑒))
2725, 26eleq12d 2823 . . . 4 (𝑐 = suc 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
2827ralbidv 3157 . . 3 (𝑐 = suc 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
29 imassrn 6045 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) ⊆ ran rank
30 rankf 9754 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
31 frn 6698 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
3230, 31ax-mp 5 . . . . . . 7 ran rank ⊆ On
3329, 32sstri 3959 . . . . . 6 (rank “ ((𝑈𝑑)‘∅)) ⊆ On
34 hsmexlem4.u . . . . . . . . . 10 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
3534ituni0 10378 . . . . . . . . 9 (𝑑 ∈ V → ((𝑈𝑑)‘∅) = 𝑑)
3635elv 3455 . . . . . . . 8 ((𝑈𝑑)‘∅) = 𝑑
3736imaeq2i 6032 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) = (rank “ 𝑑)
38 ffun 6694 . . . . . . . . . 10 (rank: (𝑅1 “ On)⟶On → Fun rank)
3930, 38ax-mp 5 . . . . . . . . 9 Fun rank
40 vex 3454 . . . . . . . . 9 𝑑 ∈ V
41 wdomimag 9547 . . . . . . . . 9 ((Fun rank ∧ 𝑑 ∈ V) → (rank “ 𝑑) ≼* 𝑑)
4239, 40, 41mp2an 692 . . . . . . . 8 (rank “ 𝑑) ≼* 𝑑
43 sneq 4602 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → {𝑎} = {𝑑})
4443fveq2d 6865 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (TC‘{𝑎}) = (TC‘{𝑑}))
4544raleqdv 3301 . . . . . . . . . . 11 (𝑎 = 𝑑 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
46 hsmexlem4.s . . . . . . . . . . 11 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
4745, 46elrab2 3665 . . . . . . . . . 10 (𝑑𝑆 ↔ (𝑑 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
4847simprbi 496 . . . . . . . . 9 (𝑑𝑆 → ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋)
49 vsnex 5392 . . . . . . . . . . . 12 {𝑑} ∈ V
50 tcid 9699 . . . . . . . . . . . 12 ({𝑑} ∈ V → {𝑑} ⊆ (TC‘{𝑑}))
5149, 50ax-mp 5 . . . . . . . . . . 11 {𝑑} ⊆ (TC‘{𝑑})
52 vsnid 4630 . . . . . . . . . . 11 𝑑 ∈ {𝑑}
5351, 52sselii 3946 . . . . . . . . . 10 𝑑 ∈ (TC‘{𝑑})
54 breq1 5113 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏𝑋𝑑𝑋))
5554rspcv 3587 . . . . . . . . . 10 (𝑑 ∈ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋))
5653, 55ax-mp 5 . . . . . . . . 9 (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋)
57 domwdom 9534 . . . . . . . . 9 (𝑑𝑋𝑑* 𝑋)
5848, 56, 573syl 18 . . . . . . . 8 (𝑑𝑆𝑑* 𝑋)
59 wdomtr 9535 . . . . . . . 8 (((rank “ 𝑑) ≼* 𝑑𝑑* 𝑋) → (rank “ 𝑑) ≼* 𝑋)
6042, 58, 59sylancr 587 . . . . . . 7 (𝑑𝑆 → (rank “ 𝑑) ≼* 𝑋)
6137, 60eqbrtrid 5145 . . . . . 6 (𝑑𝑆 → (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋)
62 eqid 2730 . . . . . . 7 OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅)))
6362hsmexlem1 10386 . . . . . 6 (((rank “ ((𝑈𝑑)‘∅)) ⊆ On ∧ (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
6433, 61, 63sylancr 587 . . . . 5 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
65 hsmexlem4.h . . . . . 6 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
6665hsmexlem7 10383 . . . . 5 (𝐻‘∅) = (har‘𝒫 𝑋)
6764, 66eleqtrrdi 2840 . . . 4 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅))
6867rgen 3047 . . 3 𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)
69 nfra1 3262 . . . . . 6 𝑑𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)
70 nfv 1914 . . . . . 6 𝑑 𝑒 ∈ ω
7169, 70nfan 1899 . . . . 5 𝑑(∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω)
7234ituniiun 10382 . . . . . . . . . . . . 13 (𝑑 ∈ V → ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒))
7372elv 3455 . . . . . . . . . . . 12 ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒)
7473imaeq2i 6032 . . . . . . . . . . 11 (rank “ ((𝑈𝑑)‘suc 𝑒)) = (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒))
75 imaiun 7222 . . . . . . . . . . 11 (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
7674, 75eqtri 2753 . . . . . . . . . 10 (rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
77 oieq2 9473 . . . . . . . . . 10 ((rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))))
7876, 77ax-mp 5 . . . . . . . . 9 OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
7978dmeqi 5871 . . . . . . . 8 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
8058ad2antll 729 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → 𝑑* 𝑋)
8165hsmexlem9 10385 . . . . . . . . . 10 (𝑒 ∈ ω → (𝐻𝑒) ∈ On)
8281ad2antrl 728 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻𝑒) ∈ On)
83 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑓 → (𝑈𝑑) = (𝑈𝑓))
8483fveq1d 6863 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑓 → ((𝑈𝑑)‘𝑒) = ((𝑈𝑓)‘𝑒))
8584imaeq2d 6034 . . . . . . . . . . . . . . 15 (𝑑 = 𝑓 → (rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)))
86 oieq2 9473 . . . . . . . . . . . . . . 15 ((rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8785, 86syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑓 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8887dmeqd 5872 . . . . . . . . . . . . 13 (𝑑 = 𝑓 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8988eleq1d 2814 . . . . . . . . . . . 12 (𝑑 = 𝑓 → (dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ↔ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
90 simpll 766 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒))
9146ssrab3 4048 . . . . . . . . . . . . . . . . . 18 𝑆 (𝑅1 “ On)
9291sseli 3945 . . . . . . . . . . . . . . . . 17 (𝑑𝑆𝑑 (𝑅1 “ On))
93 r1elssi 9765 . . . . . . . . . . . . . . . . 17 (𝑑 (𝑅1 “ On) → 𝑑 (𝑅1 “ On))
9492, 93syl 17 . . . . . . . . . . . . . . . 16 (𝑑𝑆𝑑 (𝑅1 “ On))
9594sselda 3949 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → 𝑓 (𝑅1 “ On))
96 snssi 4775 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑑 → {𝑓} ⊆ 𝑑)
9740tcss 9704 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ 𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9896, 97syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9949tcel 9705 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ {𝑑} → (TC‘𝑑) ⊆ (TC‘{𝑑}))
10052, 99mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘𝑑) ⊆ (TC‘{𝑑}))
10198, 100sstrd 3960 . . . . . . . . . . . . . . . . 17 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘{𝑑}))
102 ssralv 4018 . . . . . . . . . . . . . . . . 17 ((TC‘{𝑓}) ⊆ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
103101, 102syl 17 . . . . . . . . . . . . . . . 16 (𝑓𝑑 → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
10448, 103mpan9 506 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋)
105 sneq 4602 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑓 → {𝑎} = {𝑓})
106105fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑓 → (TC‘{𝑎}) = (TC‘{𝑓}))
107106raleqdv 3301 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑓 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
108107, 46elrab2 3665 . . . . . . . . . . . . . . 15 (𝑓𝑆 ↔ (𝑓 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
10995, 104, 108sylanbrc 583 . . . . . . . . . . . . . 14 ((𝑑𝑆𝑓𝑑) → 𝑓𝑆)
110109adantll 714 . . . . . . . . . . . . 13 (((𝑒 ∈ ω ∧ 𝑑𝑆) ∧ 𝑓𝑑) → 𝑓𝑆)
111110adantll 714 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → 𝑓𝑆)
11289, 90, 111rspcdva 3592 . . . . . . . . . . 11 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))
113 imassrn 6045 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ ran rank
114113, 32sstri 3959 . . . . . . . . . . . 12 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On
115 fvex 6874 . . . . . . . . . . . . . . 15 ((𝑈𝑓)‘𝑒) ∈ V
116115funimaex 6608 . . . . . . . . . . . . . 14 (Fun rank → (rank “ ((𝑈𝑓)‘𝑒)) ∈ V)
11739, 116ax-mp 5 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ∈ V
118117elpw 4570 . . . . . . . . . . . 12 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On)
119114, 118mpbir 231 . . . . . . . . . . 11 (rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On
120112, 119jctil 519 . . . . . . . . . 10 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
121120ralrimiva 3126 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
122 eqid 2730 . . . . . . . . . 10 OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒)))
123 eqid 2730 . . . . . . . . . 10 OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
124122, 123hsmexlem3 10388 . . . . . . . . 9 (((𝑑* 𝑋 ∧ (𝐻𝑒) ∈ On) ∧ ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12580, 82, 121, 124syl21anc 837 . . . . . . . 8 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12679, 125eqeltrid 2833 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12765hsmexlem8 10384 . . . . . . . 8 (𝑒 ∈ ω → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
128127ad2antrl 728 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
129126, 128eleqtrrd 2832 . . . . . 6 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
130129expr 456 . . . . 5 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13171, 130ralrimi 3236 . . . 4 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
132131expcom 413 . . 3 (𝑒 ∈ ω → (∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13310, 19, 28, 68, 132finds1 7878 . 2 (𝑐 ∈ ω → ∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐))
134133r19.21bi 3230 1 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592   cuni 4874   ciun 4958   class class class wbr 5110  cmpt 5191   E cep 5540   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  Oncon0 6335  suc csuc 6337  Fun wfun 6508  wf 6510  cfv 6514  ωcom 7845  reccrdg 8380  cdom 8919  OrdIsocoi 9469  harchar 9516  * cwdom 9524  TCctc 9696  𝑅1cr1 9722  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-smo 8318  df-recs 8343  df-rdg 8381  df-en 8922  df-dom 8923  df-sdom 8924  df-oi 9470  df-har 9517  df-wdom 9525  df-tc 9697  df-r1 9724  df-rank 9725
This theorem is referenced by:  hsmexlem5  10390
  Copyright terms: Public domain W3C validator