MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hsmexlem4 Structured version   Visualization version   GIF version

Theorem hsmexlem4 10466
Description: Lemma for hsmex 10469. The core induction, establishing bounds on the order types of iterated unions of the initial set. (Contributed by Stefan O'Rear, 14-Feb-2015.)
Hypotheses
Ref Expression
hsmexlem4.x 𝑋 ∈ V
hsmexlem4.h 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
hsmexlem4.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
hsmexlem4.s 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
hsmexlem4.o 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
Assertion
Ref Expression
hsmexlem4 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Distinct variable groups:   𝑎,𝑐,𝑑,𝐻   𝑆,𝑐,𝑑   𝑈,𝑐,𝑑   𝑎,𝑏,𝑧,𝑋   𝑥,𝑎,𝑦   𝑏,𝑐,𝑑,𝑥,𝑦,𝑧
Allowed substitution hints:   𝑆(𝑥,𝑦,𝑧,𝑎,𝑏)   𝑈(𝑥,𝑦,𝑧,𝑎,𝑏)   𝐻(𝑥,𝑦,𝑧,𝑏)   𝑂(𝑥,𝑦,𝑧,𝑎,𝑏,𝑐,𝑑)   𝑋(𝑥,𝑦,𝑐,𝑑)

Proof of Theorem hsmexlem4
Dummy variables 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hsmexlem4.o . . . . . . 7 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐)))
2 fveq2 6906 . . . . . . . . 9 (𝑐 = ∅ → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘∅))
32imaeq2d 6079 . . . . . . . 8 (𝑐 = ∅ → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)))
4 oieq2 9550 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘∅)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
53, 4syl 17 . . . . . . 7 (𝑐 = ∅ → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
61, 5eqtrid 2786 . . . . . 6 (𝑐 = ∅ → 𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
76dmeqd 5918 . . . . 5 (𝑐 = ∅ → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))))
8 fveq2 6906 . . . . 5 (𝑐 = ∅ → (𝐻𝑐) = (𝐻‘∅))
97, 8eleq12d 2832 . . . 4 (𝑐 = ∅ → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
109ralbidv 3175 . . 3 (𝑐 = ∅ → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)))
11 fveq2 6906 . . . . . . . . 9 (𝑐 = 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘𝑒))
1211imaeq2d 6079 . . . . . . . 8 (𝑐 = 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)))
13 oieq2 9550 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1412, 13syl 17 . . . . . . 7 (𝑐 = 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
151, 14eqtrid 2786 . . . . . 6 (𝑐 = 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
1615dmeqd 5918 . . . . 5 (𝑐 = 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))))
17 fveq2 6906 . . . . 5 (𝑐 = 𝑒 → (𝐻𝑐) = (𝐻𝑒))
1816, 17eleq12d 2832 . . . 4 (𝑐 = 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
1918ralbidv 3175 . . 3 (𝑐 = 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)))
20 fveq2 6906 . . . . . . . . 9 (𝑐 = suc 𝑒 → ((𝑈𝑑)‘𝑐) = ((𝑈𝑑)‘suc 𝑒))
2120imaeq2d 6079 . . . . . . . 8 (𝑐 = suc 𝑒 → (rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)))
22 oieq2 9550 . . . . . . . 8 ((rank “ ((𝑈𝑑)‘𝑐)) = (rank “ ((𝑈𝑑)‘suc 𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2321, 22syl 17 . . . . . . 7 (𝑐 = suc 𝑒 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑐))) = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
241, 23eqtrid 2786 . . . . . 6 (𝑐 = suc 𝑒𝑂 = OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
2524dmeqd 5918 . . . . 5 (𝑐 = suc 𝑒 → dom 𝑂 = dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))))
26 fveq2 6906 . . . . 5 (𝑐 = suc 𝑒 → (𝐻𝑐) = (𝐻‘suc 𝑒))
2725, 26eleq12d 2832 . . . 4 (𝑐 = suc 𝑒 → (dom 𝑂 ∈ (𝐻𝑐) ↔ dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
2827ralbidv 3175 . . 3 (𝑐 = suc 𝑒 → (∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐) ↔ ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
29 imassrn 6090 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) ⊆ ran rank
30 rankf 9831 . . . . . . . 8 rank: (𝑅1 “ On)⟶On
31 frn 6743 . . . . . . . 8 (rank: (𝑅1 “ On)⟶On → ran rank ⊆ On)
3230, 31ax-mp 5 . . . . . . 7 ran rank ⊆ On
3329, 32sstri 4004 . . . . . 6 (rank “ ((𝑈𝑑)‘∅)) ⊆ On
34 hsmexlem4.u . . . . . . . . . 10 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
3534ituni0 10455 . . . . . . . . 9 (𝑑 ∈ V → ((𝑈𝑑)‘∅) = 𝑑)
3635elv 3482 . . . . . . . 8 ((𝑈𝑑)‘∅) = 𝑑
3736imaeq2i 6077 . . . . . . 7 (rank “ ((𝑈𝑑)‘∅)) = (rank “ 𝑑)
38 ffun 6739 . . . . . . . . . 10 (rank: (𝑅1 “ On)⟶On → Fun rank)
3930, 38ax-mp 5 . . . . . . . . 9 Fun rank
40 vex 3481 . . . . . . . . 9 𝑑 ∈ V
41 wdomimag 9624 . . . . . . . . 9 ((Fun rank ∧ 𝑑 ∈ V) → (rank “ 𝑑) ≼* 𝑑)
4239, 40, 41mp2an 692 . . . . . . . 8 (rank “ 𝑑) ≼* 𝑑
43 sneq 4640 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → {𝑎} = {𝑑})
4443fveq2d 6910 . . . . . . . . . . . 12 (𝑎 = 𝑑 → (TC‘{𝑎}) = (TC‘{𝑑}))
4544raleqdv 3323 . . . . . . . . . . 11 (𝑎 = 𝑑 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
46 hsmexlem4.s . . . . . . . . . . 11 𝑆 = {𝑎 (𝑅1 “ On) ∣ ∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋}
4745, 46elrab2 3697 . . . . . . . . . 10 (𝑑𝑆 ↔ (𝑑 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋))
4847simprbi 496 . . . . . . . . 9 (𝑑𝑆 → ∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋)
49 vsnex 5439 . . . . . . . . . . . 12 {𝑑} ∈ V
50 tcid 9776 . . . . . . . . . . . 12 ({𝑑} ∈ V → {𝑑} ⊆ (TC‘{𝑑}))
5149, 50ax-mp 5 . . . . . . . . . . 11 {𝑑} ⊆ (TC‘{𝑑})
52 vsnid 4667 . . . . . . . . . . 11 𝑑 ∈ {𝑑}
5351, 52sselii 3991 . . . . . . . . . 10 𝑑 ∈ (TC‘{𝑑})
54 breq1 5150 . . . . . . . . . . 11 (𝑏 = 𝑑 → (𝑏𝑋𝑑𝑋))
5554rspcv 3617 . . . . . . . . . 10 (𝑑 ∈ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋))
5653, 55ax-mp 5 . . . . . . . . 9 (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋𝑑𝑋)
57 domwdom 9611 . . . . . . . . 9 (𝑑𝑋𝑑* 𝑋)
5848, 56, 573syl 18 . . . . . . . 8 (𝑑𝑆𝑑* 𝑋)
59 wdomtr 9612 . . . . . . . 8 (((rank “ 𝑑) ≼* 𝑑𝑑* 𝑋) → (rank “ 𝑑) ≼* 𝑋)
6042, 58, 59sylancr 587 . . . . . . 7 (𝑑𝑆 → (rank “ 𝑑) ≼* 𝑋)
6137, 60eqbrtrid 5182 . . . . . 6 (𝑑𝑆 → (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋)
62 eqid 2734 . . . . . . 7 OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) = OrdIso( E , (rank “ ((𝑈𝑑)‘∅)))
6362hsmexlem1 10463 . . . . . 6 (((rank “ ((𝑈𝑑)‘∅)) ⊆ On ∧ (rank “ ((𝑈𝑑)‘∅)) ≼* 𝑋) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
6433, 61, 63sylancr 587 . . . . 5 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (har‘𝒫 𝑋))
65 hsmexlem4.h . . . . . 6 𝐻 = (rec((𝑧 ∈ V ↦ (har‘𝒫 (𝑋 × 𝑧))), (har‘𝒫 𝑋)) ↾ ω)
6665hsmexlem7 10460 . . . . 5 (𝐻‘∅) = (har‘𝒫 𝑋)
6764, 66eleqtrrdi 2849 . . . 4 (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅))
6867rgen 3060 . . 3 𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘∅))) ∈ (𝐻‘∅)
69 nfra1 3281 . . . . . 6 𝑑𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒)
70 nfv 1911 . . . . . 6 𝑑 𝑒 ∈ ω
7169, 70nfan 1896 . . . . 5 𝑑(∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω)
7234ituniiun 10459 . . . . . . . . . . . . 13 (𝑑 ∈ V → ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒))
7372elv 3482 . . . . . . . . . . . 12 ((𝑈𝑑)‘suc 𝑒) = 𝑓𝑑 ((𝑈𝑓)‘𝑒)
7473imaeq2i 6077 . . . . . . . . . . 11 (rank “ ((𝑈𝑑)‘suc 𝑒)) = (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒))
75 imaiun 7264 . . . . . . . . . . 11 (rank “ 𝑓𝑑 ((𝑈𝑓)‘𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
7674, 75eqtri 2762 . . . . . . . . . 10 (rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))
77 oieq2 9550 . . . . . . . . . 10 ((rank “ ((𝑈𝑑)‘suc 𝑒)) = 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))))
7876, 77ax-mp 5 . . . . . . . . 9 OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
7978dmeqi 5917 . . . . . . . 8 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) = dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
8058ad2antll 729 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → 𝑑* 𝑋)
8165hsmexlem9 10462 . . . . . . . . . 10 (𝑒 ∈ ω → (𝐻𝑒) ∈ On)
8281ad2antrl 728 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻𝑒) ∈ On)
83 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑑 = 𝑓 → (𝑈𝑑) = (𝑈𝑓))
8483fveq1d 6908 . . . . . . . . . . . . . . . 16 (𝑑 = 𝑓 → ((𝑈𝑑)‘𝑒) = ((𝑈𝑓)‘𝑒))
8584imaeq2d 6079 . . . . . . . . . . . . . . 15 (𝑑 = 𝑓 → (rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)))
86 oieq2 9550 . . . . . . . . . . . . . . 15 ((rank “ ((𝑈𝑑)‘𝑒)) = (rank “ ((𝑈𝑓)‘𝑒)) → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8785, 86syl 17 . . . . . . . . . . . . . 14 (𝑑 = 𝑓 → OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8887dmeqd 5918 . . . . . . . . . . . . 13 (𝑑 = 𝑓 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) = dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))))
8988eleq1d 2823 . . . . . . . . . . . 12 (𝑑 = 𝑓 → (dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ↔ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
90 simpll 767 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒))
9146ssrab3 4091 . . . . . . . . . . . . . . . . . 18 𝑆 (𝑅1 “ On)
9291sseli 3990 . . . . . . . . . . . . . . . . 17 (𝑑𝑆𝑑 (𝑅1 “ On))
93 r1elssi 9842 . . . . . . . . . . . . . . . . 17 (𝑑 (𝑅1 “ On) → 𝑑 (𝑅1 “ On))
9492, 93syl 17 . . . . . . . . . . . . . . . 16 (𝑑𝑆𝑑 (𝑅1 “ On))
9594sselda 3994 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → 𝑓 (𝑅1 “ On))
96 snssi 4812 . . . . . . . . . . . . . . . . . . 19 (𝑓𝑑 → {𝑓} ⊆ 𝑑)
9740tcss 9781 . . . . . . . . . . . . . . . . . . 19 ({𝑓} ⊆ 𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9896, 97syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘𝑑))
9949tcel 9782 . . . . . . . . . . . . . . . . . . 19 (𝑑 ∈ {𝑑} → (TC‘𝑑) ⊆ (TC‘{𝑑}))
10052, 99mp1i 13 . . . . . . . . . . . . . . . . . 18 (𝑓𝑑 → (TC‘𝑑) ⊆ (TC‘{𝑑}))
10198, 100sstrd 4005 . . . . . . . . . . . . . . . . 17 (𝑓𝑑 → (TC‘{𝑓}) ⊆ (TC‘{𝑑}))
102 ssralv 4063 . . . . . . . . . . . . . . . . 17 ((TC‘{𝑓}) ⊆ (TC‘{𝑑}) → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
103101, 102syl 17 . . . . . . . . . . . . . . . 16 (𝑓𝑑 → (∀𝑏 ∈ (TC‘{𝑑})𝑏𝑋 → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
10448, 103mpan9 506 . . . . . . . . . . . . . . 15 ((𝑑𝑆𝑓𝑑) → ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋)
105 sneq 4640 . . . . . . . . . . . . . . . . . 18 (𝑎 = 𝑓 → {𝑎} = {𝑓})
106105fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝑓 → (TC‘{𝑎}) = (TC‘{𝑓}))
107106raleqdv 3323 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑓 → (∀𝑏 ∈ (TC‘{𝑎})𝑏𝑋 ↔ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
108107, 46elrab2 3697 . . . . . . . . . . . . . . 15 (𝑓𝑆 ↔ (𝑓 (𝑅1 “ On) ∧ ∀𝑏 ∈ (TC‘{𝑓})𝑏𝑋))
10995, 104, 108sylanbrc 583 . . . . . . . . . . . . . 14 ((𝑑𝑆𝑓𝑑) → 𝑓𝑆)
110109adantll 714 . . . . . . . . . . . . 13 (((𝑒 ∈ ω ∧ 𝑑𝑆) ∧ 𝑓𝑑) → 𝑓𝑆)
111110adantll 714 . . . . . . . . . . . 12 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → 𝑓𝑆)
11289, 90, 111rspcdva 3622 . . . . . . . . . . 11 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))
113 imassrn 6090 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ ran rank
114113, 32sstri 4004 . . . . . . . . . . . 12 (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On
115 fvex 6919 . . . . . . . . . . . . . . 15 ((𝑈𝑓)‘𝑒) ∈ V
116115funimaex 6655 . . . . . . . . . . . . . 14 (Fun rank → (rank “ ((𝑈𝑓)‘𝑒)) ∈ V)
11739, 116ax-mp 5 . . . . . . . . . . . . 13 (rank “ ((𝑈𝑓)‘𝑒)) ∈ V
118117elpw 4608 . . . . . . . . . . . 12 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ↔ (rank “ ((𝑈𝑓)‘𝑒)) ⊆ On)
119114, 118mpbir 231 . . . . . . . . . . 11 (rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On
120112, 119jctil 519 . . . . . . . . . 10 (((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) ∧ 𝑓𝑑) → ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
121120ralrimiva 3143 . . . . . . . . 9 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒)))
122 eqid 2734 . . . . . . . . . 10 OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒)))
123 eqid 2734 . . . . . . . . . 10 OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) = OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒)))
124122, 123hsmexlem3 10465 . . . . . . . . 9 (((𝑑* 𝑋 ∧ (𝐻𝑒) ∈ On) ∧ ∀𝑓𝑑 ((rank “ ((𝑈𝑓)‘𝑒)) ∈ 𝒫 On ∧ dom OrdIso( E , (rank “ ((𝑈𝑓)‘𝑒))) ∈ (𝐻𝑒))) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12580, 82, 121, 124syl21anc 838 . . . . . . . 8 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , 𝑓𝑑 (rank “ ((𝑈𝑓)‘𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12679, 125eqeltrid 2842 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (har‘𝒫 (𝑋 × (𝐻𝑒))))
12765hsmexlem8 10461 . . . . . . . 8 (𝑒 ∈ ω → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
128127ad2antrl 728 . . . . . . 7 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → (𝐻‘suc 𝑒) = (har‘𝒫 (𝑋 × (𝐻𝑒))))
129126, 128eleqtrrd 2841 . . . . . 6 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ (𝑒 ∈ ω ∧ 𝑑𝑆)) → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
130129expr 456 . . . . 5 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → (𝑑𝑆 → dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13171, 130ralrimi 3254 . . . 4 ((∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) ∧ 𝑒 ∈ ω) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒))
132131expcom 413 . . 3 (𝑒 ∈ ω → (∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘𝑒))) ∈ (𝐻𝑒) → ∀𝑑𝑆 dom OrdIso( E , (rank “ ((𝑈𝑑)‘suc 𝑒))) ∈ (𝐻‘suc 𝑒)))
13310, 19, 28, 68, 132finds1 7921 . 2 (𝑐 ∈ ω → ∀𝑑𝑆 dom 𝑂 ∈ (𝐻𝑐))
134133r19.21bi 3248 1 ((𝑐 ∈ ω ∧ 𝑑𝑆) → dom 𝑂 ∈ (𝐻𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  {crab 3432  Vcvv 3477  wss 3962  c0 4338  𝒫 cpw 4604  {csn 4630   cuni 4911   ciun 4995   class class class wbr 5147  cmpt 5230   E cep 5587   × cxp 5686  dom cdm 5688  ran crn 5689  cres 5690  cima 5691  Oncon0 6385  suc csuc 6387  Fun wfun 6556  wf 6558  cfv 6562  ωcom 7886  reccrdg 8447  cdom 8981  OrdIsocoi 9546  harchar 9593  * cwdom 9601  TCctc 9773  𝑅1cr1 9799  rankcrnk 9800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-smo 8384  df-recs 8409  df-rdg 8448  df-en 8984  df-dom 8985  df-sdom 8986  df-oi 9547  df-har 9594  df-wdom 9602  df-tc 9774  df-r1 9801  df-rank 9802
This theorem is referenced by:  hsmexlem5  10467
  Copyright terms: Public domain W3C validator