| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfplem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for alephfp 10005. (Contributed by NM, 6-Nov-2004.) |
| Ref | Expression |
|---|---|
| alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
| Ref | Expression |
|---|---|
| alephfplem3 | ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6828 | . . 3 ⊢ (𝑣 = ∅ → (𝐻‘𝑣) = (𝐻‘∅)) | |
| 2 | 1 | eleq1d 2816 | . 2 ⊢ (𝑣 = ∅ → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ)) |
| 3 | fveq2 6828 | . . 3 ⊢ (𝑣 = 𝑤 → (𝐻‘𝑣) = (𝐻‘𝑤)) | |
| 4 | 3 | eleq1d 2816 | . 2 ⊢ (𝑣 = 𝑤 → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘𝑤) ∈ ran ℵ)) |
| 5 | fveq2 6828 | . . 3 ⊢ (𝑣 = suc 𝑤 → (𝐻‘𝑣) = (𝐻‘suc 𝑤)) | |
| 6 | 5 | eleq1d 2816 | . 2 ⊢ (𝑣 = suc 𝑤 → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘suc 𝑤) ∈ ran ℵ)) |
| 7 | alephfplem.1 | . . 3 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
| 8 | 7 | alephfplem1 10001 | . 2 ⊢ (𝐻‘∅) ∈ ran ℵ |
| 9 | alephfnon 9962 | . . . 4 ⊢ ℵ Fn On | |
| 10 | alephsson 9997 | . . . . 5 ⊢ ran ℵ ⊆ On | |
| 11 | 10 | sseli 3925 | . . . 4 ⊢ ((𝐻‘𝑤) ∈ ran ℵ → (𝐻‘𝑤) ∈ On) |
| 12 | fnfvelrn 7019 | . . . 4 ⊢ ((ℵ Fn On ∧ (𝐻‘𝑤) ∈ On) → (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ) | |
| 13 | 9, 11, 12 | sylancr 587 | . . 3 ⊢ ((𝐻‘𝑤) ∈ ran ℵ → (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ) |
| 14 | 7 | alephfplem2 10002 | . . . 4 ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) |
| 15 | 14 | eleq1d 2816 | . . 3 ⊢ (𝑤 ∈ ω → ((𝐻‘suc 𝑤) ∈ ran ℵ ↔ (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ)) |
| 16 | 13, 15 | imbitrrid 246 | . 2 ⊢ (𝑤 ∈ ω → ((𝐻‘𝑤) ∈ ran ℵ → (𝐻‘suc 𝑤) ∈ ran ℵ)) |
| 17 | 2, 4, 6, 8, 16 | finds1 7835 | 1 ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∅c0 4282 ran crn 5620 ↾ cres 5621 Oncon0 6312 suc csuc 6314 Fn wfn 6482 ‘cfv 6487 ωcom 7802 reccrdg 8334 ℵcale 9835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9402 df-har 9449 df-card 9838 df-aleph 9839 |
| This theorem is referenced by: alephfplem4 10004 alephfp 10005 |
| Copyright terms: Public domain | W3C validator |