Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephfplem3 | Structured version Visualization version GIF version |
Description: Lemma for alephfp 9610. (Contributed by NM, 6-Nov-2004.) |
Ref | Expression |
---|---|
alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
Ref | Expression |
---|---|
alephfplem3 | ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6676 | . . 3 ⊢ (𝑣 = ∅ → (𝐻‘𝑣) = (𝐻‘∅)) | |
2 | 1 | eleq1d 2817 | . 2 ⊢ (𝑣 = ∅ → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ)) |
3 | fveq2 6676 | . . 3 ⊢ (𝑣 = 𝑤 → (𝐻‘𝑣) = (𝐻‘𝑤)) | |
4 | 3 | eleq1d 2817 | . 2 ⊢ (𝑣 = 𝑤 → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘𝑤) ∈ ran ℵ)) |
5 | fveq2 6676 | . . 3 ⊢ (𝑣 = suc 𝑤 → (𝐻‘𝑣) = (𝐻‘suc 𝑤)) | |
6 | 5 | eleq1d 2817 | . 2 ⊢ (𝑣 = suc 𝑤 → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘suc 𝑤) ∈ ran ℵ)) |
7 | alephfplem.1 | . . 3 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
8 | 7 | alephfplem1 9606 | . 2 ⊢ (𝐻‘∅) ∈ ran ℵ |
9 | alephfnon 9567 | . . . 4 ⊢ ℵ Fn On | |
10 | alephsson 9602 | . . . . 5 ⊢ ran ℵ ⊆ On | |
11 | 10 | sseli 3873 | . . . 4 ⊢ ((𝐻‘𝑤) ∈ ran ℵ → (𝐻‘𝑤) ∈ On) |
12 | fnfvelrn 6860 | . . . 4 ⊢ ((ℵ Fn On ∧ (𝐻‘𝑤) ∈ On) → (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ) | |
13 | 9, 11, 12 | sylancr 590 | . . 3 ⊢ ((𝐻‘𝑤) ∈ ran ℵ → (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ) |
14 | 7 | alephfplem2 9607 | . . . 4 ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) |
15 | 14 | eleq1d 2817 | . . 3 ⊢ (𝑤 ∈ ω → ((𝐻‘suc 𝑤) ∈ ran ℵ ↔ (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ)) |
16 | 13, 15 | syl5ibr 249 | . 2 ⊢ (𝑤 ∈ ω → ((𝐻‘𝑤) ∈ ran ℵ → (𝐻‘suc 𝑤) ∈ ran ℵ)) |
17 | 2, 4, 6, 8, 16 | finds1 7634 | 1 ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 ∅c0 4211 ran crn 5526 ↾ cres 5527 Oncon0 6172 suc csuc 6174 Fn wfn 6334 ‘cfv 6339 ωcom 7601 reccrdg 8076 ℵcale 9440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-inf2 9179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7129 df-om 7602 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-er 8322 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-oi 9049 df-har 9096 df-card 9443 df-aleph 9444 |
This theorem is referenced by: alephfplem4 9609 alephfp 9610 |
Copyright terms: Public domain | W3C validator |