![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephfplem3 | Structured version Visualization version GIF version |
Description: Lemma for alephfp 10099. (Contributed by NM, 6-Nov-2004.) |
Ref | Expression |
---|---|
alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
Ref | Expression |
---|---|
alephfplem3 | ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6888 | . . 3 ⊢ (𝑣 = ∅ → (𝐻‘𝑣) = (𝐻‘∅)) | |
2 | 1 | eleq1d 2818 | . 2 ⊢ (𝑣 = ∅ → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ)) |
3 | fveq2 6888 | . . 3 ⊢ (𝑣 = 𝑤 → (𝐻‘𝑣) = (𝐻‘𝑤)) | |
4 | 3 | eleq1d 2818 | . 2 ⊢ (𝑣 = 𝑤 → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘𝑤) ∈ ran ℵ)) |
5 | fveq2 6888 | . . 3 ⊢ (𝑣 = suc 𝑤 → (𝐻‘𝑣) = (𝐻‘suc 𝑤)) | |
6 | 5 | eleq1d 2818 | . 2 ⊢ (𝑣 = suc 𝑤 → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘suc 𝑤) ∈ ran ℵ)) |
7 | alephfplem.1 | . . 3 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
8 | 7 | alephfplem1 10095 | . 2 ⊢ (𝐻‘∅) ∈ ran ℵ |
9 | alephfnon 10056 | . . . 4 ⊢ ℵ Fn On | |
10 | alephsson 10091 | . . . . 5 ⊢ ran ℵ ⊆ On | |
11 | 10 | sseli 3977 | . . . 4 ⊢ ((𝐻‘𝑤) ∈ ran ℵ → (𝐻‘𝑤) ∈ On) |
12 | fnfvelrn 7079 | . . . 4 ⊢ ((ℵ Fn On ∧ (𝐻‘𝑤) ∈ On) → (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ) | |
13 | 9, 11, 12 | sylancr 587 | . . 3 ⊢ ((𝐻‘𝑤) ∈ ran ℵ → (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ) |
14 | 7 | alephfplem2 10096 | . . . 4 ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) |
15 | 14 | eleq1d 2818 | . . 3 ⊢ (𝑤 ∈ ω → ((𝐻‘suc 𝑤) ∈ ran ℵ ↔ (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ)) |
16 | 13, 15 | imbitrrid 245 | . 2 ⊢ (𝑤 ∈ ω → ((𝐻‘𝑤) ∈ ran ℵ → (𝐻‘suc 𝑤) ∈ ran ℵ)) |
17 | 2, 4, 6, 8, 16 | finds1 7888 | 1 ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∅c0 4321 ran crn 5676 ↾ cres 5677 Oncon0 6361 suc csuc 6363 Fn wfn 6535 ‘cfv 6540 ωcom 7851 reccrdg 8405 ℵcale 9927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-oi 9501 df-har 9548 df-card 9930 df-aleph 9931 |
This theorem is referenced by: alephfplem4 10098 alephfp 10099 |
Copyright terms: Public domain | W3C validator |