![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alephfplem3 | Structured version Visualization version GIF version |
Description: Lemma for alephfp 10099. (Contributed by NM, 6-Nov-2004.) |
Ref | Expression |
---|---|
alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
Ref | Expression |
---|---|
alephfplem3 | ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6881 | . . 3 ⊢ (𝑣 = ∅ → (𝐻‘𝑣) = (𝐻‘∅)) | |
2 | 1 | eleq1d 2810 | . 2 ⊢ (𝑣 = ∅ → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ)) |
3 | fveq2 6881 | . . 3 ⊢ (𝑣 = 𝑤 → (𝐻‘𝑣) = (𝐻‘𝑤)) | |
4 | 3 | eleq1d 2810 | . 2 ⊢ (𝑣 = 𝑤 → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘𝑤) ∈ ran ℵ)) |
5 | fveq2 6881 | . . 3 ⊢ (𝑣 = suc 𝑤 → (𝐻‘𝑣) = (𝐻‘suc 𝑤)) | |
6 | 5 | eleq1d 2810 | . 2 ⊢ (𝑣 = suc 𝑤 → ((𝐻‘𝑣) ∈ ran ℵ ↔ (𝐻‘suc 𝑤) ∈ ran ℵ)) |
7 | alephfplem.1 | . . 3 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
8 | 7 | alephfplem1 10095 | . 2 ⊢ (𝐻‘∅) ∈ ran ℵ |
9 | alephfnon 10056 | . . . 4 ⊢ ℵ Fn On | |
10 | alephsson 10091 | . . . . 5 ⊢ ran ℵ ⊆ On | |
11 | 10 | sseli 3970 | . . . 4 ⊢ ((𝐻‘𝑤) ∈ ran ℵ → (𝐻‘𝑤) ∈ On) |
12 | fnfvelrn 7072 | . . . 4 ⊢ ((ℵ Fn On ∧ (𝐻‘𝑤) ∈ On) → (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ) | |
13 | 9, 11, 12 | sylancr 586 | . . 3 ⊢ ((𝐻‘𝑤) ∈ ran ℵ → (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ) |
14 | 7 | alephfplem2 10096 | . . . 4 ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) |
15 | 14 | eleq1d 2810 | . . 3 ⊢ (𝑤 ∈ ω → ((𝐻‘suc 𝑤) ∈ ran ℵ ↔ (ℵ‘(𝐻‘𝑤)) ∈ ran ℵ)) |
16 | 13, 15 | imbitrrid 245 | . 2 ⊢ (𝑤 ∈ ω → ((𝐻‘𝑤) ∈ ran ℵ → (𝐻‘suc 𝑤) ∈ ran ℵ)) |
17 | 2, 4, 6, 8, 16 | finds1 7885 | 1 ⊢ (𝑣 ∈ ω → (𝐻‘𝑣) ∈ ran ℵ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∅c0 4314 ran crn 5667 ↾ cres 5668 Oncon0 6354 suc csuc 6356 Fn wfn 6528 ‘cfv 6533 ωcom 7848 reccrdg 8404 ℵcale 9927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-oi 9501 df-har 9548 df-card 9930 df-aleph 9931 |
This theorem is referenced by: alephfplem4 10098 alephfp 10099 |
Copyright terms: Public domain | W3C validator |