MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfplem3 Structured version   Visualization version   GIF version

Theorem alephfplem3 10097
Description: Lemma for alephfp 10099. (Contributed by NM, 6-Nov-2004.)
Hypothesis
Ref Expression
alephfplem.1 𝐻 = (rec(ℵ, ω) ↾ ω)
Assertion
Ref Expression
alephfplem3 (𝑣 ∈ ω → (𝐻𝑣) ∈ ran ℵ)
Distinct variable group:   𝑣,𝐻

Proof of Theorem alephfplem3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6888 . . 3 (𝑣 = ∅ → (𝐻𝑣) = (𝐻‘∅))
21eleq1d 2818 . 2 (𝑣 = ∅ → ((𝐻𝑣) ∈ ran ℵ ↔ (𝐻‘∅) ∈ ran ℵ))
3 fveq2 6888 . . 3 (𝑣 = 𝑤 → (𝐻𝑣) = (𝐻𝑤))
43eleq1d 2818 . 2 (𝑣 = 𝑤 → ((𝐻𝑣) ∈ ran ℵ ↔ (𝐻𝑤) ∈ ran ℵ))
5 fveq2 6888 . . 3 (𝑣 = suc 𝑤 → (𝐻𝑣) = (𝐻‘suc 𝑤))
65eleq1d 2818 . 2 (𝑣 = suc 𝑤 → ((𝐻𝑣) ∈ ran ℵ ↔ (𝐻‘suc 𝑤) ∈ ran ℵ))
7 alephfplem.1 . . 3 𝐻 = (rec(ℵ, ω) ↾ ω)
87alephfplem1 10095 . 2 (𝐻‘∅) ∈ ran ℵ
9 alephfnon 10056 . . . 4 ℵ Fn On
10 alephsson 10091 . . . . 5 ran ℵ ⊆ On
1110sseli 3977 . . . 4 ((𝐻𝑤) ∈ ran ℵ → (𝐻𝑤) ∈ On)
12 fnfvelrn 7079 . . . 4 ((ℵ Fn On ∧ (𝐻𝑤) ∈ On) → (ℵ‘(𝐻𝑤)) ∈ ran ℵ)
139, 11, 12sylancr 587 . . 3 ((𝐻𝑤) ∈ ran ℵ → (ℵ‘(𝐻𝑤)) ∈ ran ℵ)
147alephfplem2 10096 . . . 4 (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻𝑤)))
1514eleq1d 2818 . . 3 (𝑤 ∈ ω → ((𝐻‘suc 𝑤) ∈ ran ℵ ↔ (ℵ‘(𝐻𝑤)) ∈ ran ℵ))
1613, 15imbitrrid 245 . 2 (𝑤 ∈ ω → ((𝐻𝑤) ∈ ran ℵ → (𝐻‘suc 𝑤) ∈ ran ℵ))
172, 4, 6, 8, 16finds1 7888 1 (𝑣 ∈ ω → (𝐻𝑣) ∈ ran ℵ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  c0 4321  ran crn 5676  cres 5677  Oncon0 6361  suc csuc 6363   Fn wfn 6535  cfv 6540  ωcom 7851  reccrdg 8405  cale 9927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-har 9548  df-card 9930  df-aleph 9931
This theorem is referenced by:  alephfplem4  10098  alephfp  10099
  Copyright terms: Public domain W3C validator