MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnv Structured version   Visualization version   GIF version

Theorem pi1xfrcnv 24990
Description: Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pi1xfrcnv.h 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
Assertion
Ref Expression
pi1xfrcnv (𝜑 → (𝐺 = 𝐻𝐺 ∈ (𝑄 GrpHom 𝑃)))
Distinct variable groups:   𝑔,,𝑥,𝐵   𝑔,𝐹,,𝑥   𝑔,𝐼,,𝑥   ,𝐺   𝜑,𝑔,,𝑥   𝑔,𝐽,,𝑥   𝑃,𝑔,,𝑥   𝑄,𝑔,,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝐻(𝑥,𝑔,)   𝑋(𝑥,𝑔,)

Proof of Theorem pi1xfrcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.p . . . 4 𝑃 = (𝐽 π1 (𝐹‘0))
2 pi1xfr.q . . . 4 𝑄 = (𝐽 π1 (𝐹‘1))
3 pi1xfr.b . . . 4 𝐵 = (Base‘𝑃)
4 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
5 pi1xfr.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 pi1xfr.f . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
7 pi1xfr.i . . . 4 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
8 pi1xfrcnv.h . . . 4 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
91, 2, 3, 4, 5, 6, 7, 8pi1xfrcnvlem 24989 . . 3 (𝜑𝐺𝐻)
10 fvex 6853 . . . . . . . 8 ( ≃ph𝐽) ∈ V
11 ecexg 8652 . . . . . . . 8 (( ≃ph𝐽) ∈ V → []( ≃ph𝐽) ∈ V)
1210, 11mp1i 13 . . . . . . 7 ((𝜑 (Base‘𝑄)) → []( ≃ph𝐽) ∈ V)
13 ecexg 8652 . . . . . . . 8 (( ≃ph𝐽) ∈ V → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) ∈ V)
1410, 13mp1i 13 . . . . . . 7 ((𝜑 (Base‘𝑄)) → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) ∈ V)
158, 12, 14fliftrel 7265 . . . . . 6 (𝜑𝐻 ⊆ (V × V))
16 df-rel 5638 . . . . . 6 (Rel 𝐻𝐻 ⊆ (V × V))
1715, 16sylibr 234 . . . . 5 (𝜑 → Rel 𝐻)
18 dfrel2 6150 . . . . 5 (Rel 𝐻𝐻 = 𝐻)
1917, 18sylib 218 . . . 4 (𝜑𝐻 = 𝐻)
20 0elunit 13406 . . . . . . . . . 10 0 ∈ (0[,]1)
21 oveq2 7377 . . . . . . . . . . . . 13 (𝑥 = 0 → (1 − 𝑥) = (1 − 0))
22 1m0e1 12278 . . . . . . . . . . . . 13 (1 − 0) = 1
2321, 22eqtrdi 2780 . . . . . . . . . . . 12 (𝑥 = 0 → (1 − 𝑥) = 1)
2423fveq2d 6844 . . . . . . . . . . 11 (𝑥 = 0 → (𝐹‘(1 − 𝑥)) = (𝐹‘1))
25 fvex 6853 . . . . . . . . . . 11 (𝐹‘1) ∈ V
2624, 7, 25fvmpt 6950 . . . . . . . . . 10 (0 ∈ (0[,]1) → (𝐼‘0) = (𝐹‘1))
2720, 26ax-mp 5 . . . . . . . . 9 (𝐼‘0) = (𝐹‘1)
2827oveq2i 7380 . . . . . . . 8 (𝐽 π1 (𝐼‘0)) = (𝐽 π1 (𝐹‘1))
292, 28eqtr4i 2755 . . . . . . 7 𝑄 = (𝐽 π1 (𝐼‘0))
30 1elunit 13407 . . . . . . . . . 10 1 ∈ (0[,]1)
31 oveq2 7377 . . . . . . . . . . . . 13 (𝑥 = 1 → (1 − 𝑥) = (1 − 1))
3231fveq2d 6844 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − 1)))
33 1m1e0 12234 . . . . . . . . . . . . 13 (1 − 1) = 0
3433fveq2i 6843 . . . . . . . . . . . 12 (𝐹‘(1 − 1)) = (𝐹‘0)
3532, 34eqtrdi 2780 . . . . . . . . . . 11 (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘0))
36 fvex 6853 . . . . . . . . . . 11 (𝐹‘0) ∈ V
3735, 7, 36fvmpt 6950 . . . . . . . . . 10 (1 ∈ (0[,]1) → (𝐼‘1) = (𝐹‘0))
3830, 37ax-mp 5 . . . . . . . . 9 (𝐼‘1) = (𝐹‘0)
3938oveq2i 7380 . . . . . . . 8 (𝐽 π1 (𝐼‘1)) = (𝐽 π1 (𝐹‘0))
401, 39eqtr4i 2755 . . . . . . 7 𝑃 = (𝐽 π1 (𝐼‘1))
41 eqid 2729 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
42 eqid 2729 . . . . . . 7 ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
437pcorevcl 24958 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
446, 43syl 17 . . . . . . . 8 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
4544simp1d 1142 . . . . . . 7 (𝜑𝐼 ∈ (II Cn 𝐽))
46 oveq2 7377 . . . . . . . . 9 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
4746fveq2d 6844 . . . . . . . 8 (𝑧 = 𝑦 → (𝐼‘(1 − 𝑧)) = (𝐼‘(1 − 𝑦)))
4847cbvmptv 5206 . . . . . . 7 (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑦 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑦)))
49 eqid 2729 . . . . . . 7 ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩) = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩)
5029, 40, 41, 42, 5, 45, 48, 49pi1xfrcnvlem 24989 . . . . . 6 (𝜑ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ⊆ ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
51 iitopon 24805 . . . . . . . . . . . . . . . 16 II ∈ (TopOn‘(0[,]1))
52 cnf2 23169 . . . . . . . . . . . . . . . 16 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
5351, 5, 6, 52mp3an2i 1468 . . . . . . . . . . . . . . 15 (𝜑𝐹:(0[,]1)⟶𝑋)
5453feqmptd 6911 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐹𝑧)))
55 iirev 24856 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (0[,]1) → (1 − 𝑧) ∈ (0[,]1))
56 oveq2 7377 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (1 − 𝑧) → (1 − 𝑥) = (1 − (1 − 𝑧)))
5756fveq2d 6844 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1 − 𝑧) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑧))))
58 fvex 6853 . . . . . . . . . . . . . . . . . 18 (𝐹‘(1 − (1 − 𝑧))) ∈ V
5957, 7, 58fvmpt 6950 . . . . . . . . . . . . . . . . 17 ((1 − 𝑧) ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧))))
6055, 59syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧))))
61 ax-1cn 11102 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
62 unitssre 13436 . . . . . . . . . . . . . . . . . . . 20 (0[,]1) ⊆ ℝ
6362sseli 3939 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
6463recnd 11178 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℂ)
65 nncan 11427 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (1 − (1 − 𝑧)) = 𝑧)
6661, 64, 65sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (0[,]1) → (1 − (1 − 𝑧)) = 𝑧)
6766fveq2d 6844 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (0[,]1) → (𝐹‘(1 − (1 − 𝑧))) = (𝐹𝑧))
6860, 67eqtrd 2764 . . . . . . . . . . . . . . 15 (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹𝑧))
6968mpteq2ia 5197 . . . . . . . . . . . . . 14 (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝐹𝑧))
7054, 69eqtr4di 2782 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))
7170oveq1d 7384 . . . . . . . . . . . 12 (𝜑 → (𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼)) = ((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼)))
7271eceq1d 8688 . . . . . . . . . . 11 (𝜑 → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) = [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽))
7372opeq2d 4840 . . . . . . . . . 10 (𝜑 → ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
7473mpteq2dv 5196 . . . . . . . . 9 (𝜑 → ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
7574rneqd 5891 . . . . . . . 8 (𝜑 → ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
768, 75eqtrid 2776 . . . . . . 7 (𝜑𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
7776cnveqd 5829 . . . . . 6 (𝜑𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
783a1i 11 . . . . . . . . . 10 (𝜑𝐵 = (Base‘𝑃))
7978unieqd 4880 . . . . . . . . 9 (𝜑 𝐵 = (Base‘𝑃))
8070oveq2d 7385 . . . . . . . . . . . 12 (𝜑 → (𝑔(*𝑝𝐽)𝐹) = (𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))
8180oveq2d 7385 . . . . . . . . . . 11 (𝜑 → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))))
8281eceq1d 8688 . . . . . . . . . 10 (𝜑 → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽))
8382opeq2d 4840 . . . . . . . . 9 (𝜑 → ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩ = ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩)
8479, 83mpteq12dv 5189 . . . . . . . 8 (𝜑 → (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩) = (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
8584rneqd 5891 . . . . . . 7 (𝜑 → ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩) = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
864, 85eqtrid 2776 . . . . . 6 (𝜑𝐺 = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
8750, 77, 863sstr4d 3999 . . . . 5 (𝜑𝐻𝐺)
88 cnvss 5826 . . . . 5 (𝐻𝐺𝐻𝐺)
8987, 88syl 17 . . . 4 (𝜑𝐻𝐺)
9019, 89eqsstrrd 3979 . . 3 (𝜑𝐻𝐺)
919, 90eqssd 3961 . 2 (𝜑𝐺 = 𝐻)
9291, 76eqtrd 2764 . . 3 (𝜑𝐺 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
9329, 40, 41, 42, 5, 45, 48pi1xfr 24988 . . 3 (𝜑 → ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∈ (𝑄 GrpHom 𝑃))
9492, 93eqeltrd 2828 . 2 (𝜑𝐺 ∈ (𝑄 GrpHom 𝑃))
9591, 94jca 511 1 (𝜑 → (𝐺 = 𝐻𝐺 ∈ (𝑄 GrpHom 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  cop 4591   cuni 4867  cmpt 5183   × cxp 5629  ccnv 5630  ran crn 5632  Rel wrel 5636  wf 6495  cfv 6499  (class class class)co 7369  [cec 8646  cc 11042  cr 11043  0cc0 11044  1c1 11045  cmin 11381  [,]cicc 13285  Basecbs 17155   GrpHom cghm 19126  TopOnctopon 22830   Cn ccn 23144  IIcii 24801  phcphtpc 24901  *𝑝cpco 24933   π1 cpi1 24936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-qus 17448  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-mulg 18982  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-cn 23147  df-cnp 23148  df-tx 23482  df-hmeo 23675  df-xms 24241  df-ms 24242  df-tms 24243  df-ii 24803  df-htpy 24902  df-phtpy 24903  df-phtpc 24924  df-pco 24938  df-om1 24939  df-pi1 24941
This theorem is referenced by:  pi1xfrgim  24991
  Copyright terms: Public domain W3C validator