MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnv Structured version   Visualization version   GIF version

Theorem pi1xfrcnv 23664
Description: Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pi1xfrcnv.h 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
Assertion
Ref Expression
pi1xfrcnv (𝜑 → (𝐺 = 𝐻𝐺 ∈ (𝑄 GrpHom 𝑃)))
Distinct variable groups:   𝑔,,𝑥,𝐵   𝑔,𝐹,,𝑥   𝑔,𝐼,,𝑥   ,𝐺   𝜑,𝑔,,𝑥   𝑔,𝐽,,𝑥   𝑃,𝑔,,𝑥   𝑄,𝑔,,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝐻(𝑥,𝑔,)   𝑋(𝑥,𝑔,)

Proof of Theorem pi1xfrcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.p . . . 4 𝑃 = (𝐽 π1 (𝐹‘0))
2 pi1xfr.q . . . 4 𝑄 = (𝐽 π1 (𝐹‘1))
3 pi1xfr.b . . . 4 𝐵 = (Base‘𝑃)
4 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
5 pi1xfr.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 pi1xfr.f . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
7 pi1xfr.i . . . 4 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
8 pi1xfrcnv.h . . . 4 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
91, 2, 3, 4, 5, 6, 7, 8pi1xfrcnvlem 23663 . . 3 (𝜑𝐺𝐻)
10 fvex 6686 . . . . . . . 8 ( ≃ph𝐽) ∈ V
11 ecexg 8296 . . . . . . . 8 (( ≃ph𝐽) ∈ V → []( ≃ph𝐽) ∈ V)
1210, 11mp1i 13 . . . . . . 7 ((𝜑 (Base‘𝑄)) → []( ≃ph𝐽) ∈ V)
13 ecexg 8296 . . . . . . . 8 (( ≃ph𝐽) ∈ V → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) ∈ V)
1410, 13mp1i 13 . . . . . . 7 ((𝜑 (Base‘𝑄)) → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) ∈ V)
158, 12, 14fliftrel 7064 . . . . . 6 (𝜑𝐻 ⊆ (V × V))
16 df-rel 5565 . . . . . 6 (Rel 𝐻𝐻 ⊆ (V × V))
1715, 16sylibr 236 . . . . 5 (𝜑 → Rel 𝐻)
18 dfrel2 6049 . . . . 5 (Rel 𝐻𝐻 = 𝐻)
1917, 18sylib 220 . . . 4 (𝜑𝐻 = 𝐻)
20 0elunit 12858 . . . . . . . . . 10 0 ∈ (0[,]1)
21 oveq2 7167 . . . . . . . . . . . . 13 (𝑥 = 0 → (1 − 𝑥) = (1 − 0))
22 1m0e1 11761 . . . . . . . . . . . . 13 (1 − 0) = 1
2321, 22syl6eq 2875 . . . . . . . . . . . 12 (𝑥 = 0 → (1 − 𝑥) = 1)
2423fveq2d 6677 . . . . . . . . . . 11 (𝑥 = 0 → (𝐹‘(1 − 𝑥)) = (𝐹‘1))
25 fvex 6686 . . . . . . . . . . 11 (𝐹‘1) ∈ V
2624, 7, 25fvmpt 6771 . . . . . . . . . 10 (0 ∈ (0[,]1) → (𝐼‘0) = (𝐹‘1))
2720, 26ax-mp 5 . . . . . . . . 9 (𝐼‘0) = (𝐹‘1)
2827oveq2i 7170 . . . . . . . 8 (𝐽 π1 (𝐼‘0)) = (𝐽 π1 (𝐹‘1))
292, 28eqtr4i 2850 . . . . . . 7 𝑄 = (𝐽 π1 (𝐼‘0))
30 1elunit 12859 . . . . . . . . . 10 1 ∈ (0[,]1)
31 oveq2 7167 . . . . . . . . . . . . 13 (𝑥 = 1 → (1 − 𝑥) = (1 − 1))
3231fveq2d 6677 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − 1)))
33 1m1e0 11712 . . . . . . . . . . . . 13 (1 − 1) = 0
3433fveq2i 6676 . . . . . . . . . . . 12 (𝐹‘(1 − 1)) = (𝐹‘0)
3532, 34syl6eq 2875 . . . . . . . . . . 11 (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘0))
36 fvex 6686 . . . . . . . . . . 11 (𝐹‘0) ∈ V
3735, 7, 36fvmpt 6771 . . . . . . . . . 10 (1 ∈ (0[,]1) → (𝐼‘1) = (𝐹‘0))
3830, 37ax-mp 5 . . . . . . . . 9 (𝐼‘1) = (𝐹‘0)
3938oveq2i 7170 . . . . . . . 8 (𝐽 π1 (𝐼‘1)) = (𝐽 π1 (𝐹‘0))
401, 39eqtr4i 2850 . . . . . . 7 𝑃 = (𝐽 π1 (𝐼‘1))
41 eqid 2824 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
42 eqid 2824 . . . . . . 7 ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
437pcorevcl 23632 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
446, 43syl 17 . . . . . . . 8 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
4544simp1d 1138 . . . . . . 7 (𝜑𝐼 ∈ (II Cn 𝐽))
46 oveq2 7167 . . . . . . . . 9 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
4746fveq2d 6677 . . . . . . . 8 (𝑧 = 𝑦 → (𝐼‘(1 − 𝑧)) = (𝐼‘(1 − 𝑦)))
4847cbvmptv 5172 . . . . . . 7 (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑦 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑦)))
49 eqid 2824 . . . . . . 7 ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩) = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩)
5029, 40, 41, 42, 5, 45, 48, 49pi1xfrcnvlem 23663 . . . . . 6 (𝜑ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ⊆ ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
51 iitopon 23490 . . . . . . . . . . . . . . . 16 II ∈ (TopOn‘(0[,]1))
52 cnf2 21860 . . . . . . . . . . . . . . . 16 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
5351, 5, 6, 52mp3an2i 1462 . . . . . . . . . . . . . . 15 (𝜑𝐹:(0[,]1)⟶𝑋)
5453feqmptd 6736 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐹𝑧)))
55 iirev 23536 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (0[,]1) → (1 − 𝑧) ∈ (0[,]1))
56 oveq2 7167 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (1 − 𝑧) → (1 − 𝑥) = (1 − (1 − 𝑧)))
5756fveq2d 6677 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1 − 𝑧) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑧))))
58 fvex 6686 . . . . . . . . . . . . . . . . . 18 (𝐹‘(1 − (1 − 𝑧))) ∈ V
5957, 7, 58fvmpt 6771 . . . . . . . . . . . . . . . . 17 ((1 − 𝑧) ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧))))
6055, 59syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧))))
61 ax-1cn 10598 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
62 unitssre 12888 . . . . . . . . . . . . . . . . . . . 20 (0[,]1) ⊆ ℝ
6362sseli 3966 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
6463recnd 10672 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℂ)
65 nncan 10918 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (1 − (1 − 𝑧)) = 𝑧)
6661, 64, 65sylancr 589 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (0[,]1) → (1 − (1 − 𝑧)) = 𝑧)
6766fveq2d 6677 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (0[,]1) → (𝐹‘(1 − (1 − 𝑧))) = (𝐹𝑧))
6860, 67eqtrd 2859 . . . . . . . . . . . . . . 15 (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹𝑧))
6968mpteq2ia 5160 . . . . . . . . . . . . . 14 (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝐹𝑧))
7054, 69syl6eqr 2877 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))
7170oveq1d 7174 . . . . . . . . . . . 12 (𝜑 → (𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼)) = ((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼)))
7271eceq1d 8331 . . . . . . . . . . 11 (𝜑 → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) = [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽))
7372opeq2d 4813 . . . . . . . . . 10 (𝜑 → ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
7473mpteq2dv 5165 . . . . . . . . 9 (𝜑 → ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
7574rneqd 5811 . . . . . . . 8 (𝜑 → ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
768, 75syl5eq 2871 . . . . . . 7 (𝜑𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
7776cnveqd 5749 . . . . . 6 (𝜑𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
783a1i 11 . . . . . . . . . 10 (𝜑𝐵 = (Base‘𝑃))
7978unieqd 4855 . . . . . . . . 9 (𝜑 𝐵 = (Base‘𝑃))
8070oveq2d 7175 . . . . . . . . . . . 12 (𝜑 → (𝑔(*𝑝𝐽)𝐹) = (𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))
8180oveq2d 7175 . . . . . . . . . . 11 (𝜑 → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))))
8281eceq1d 8331 . . . . . . . . . 10 (𝜑 → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽))
8382opeq2d 4813 . . . . . . . . 9 (𝜑 → ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩ = ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩)
8479, 83mpteq12dv 5154 . . . . . . . 8 (𝜑 → (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩) = (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
8584rneqd 5811 . . . . . . 7 (𝜑 → ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩) = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
864, 85syl5eq 2871 . . . . . 6 (𝜑𝐺 = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
8750, 77, 863sstr4d 4017 . . . . 5 (𝜑𝐻𝐺)
88 cnvss 5746 . . . . 5 (𝐻𝐺𝐻𝐺)
8987, 88syl 17 . . . 4 (𝜑𝐻𝐺)
9019, 89eqsstrrd 4009 . . 3 (𝜑𝐻𝐺)
919, 90eqssd 3987 . 2 (𝜑𝐺 = 𝐻)
9291, 76eqtrd 2859 . . 3 (𝜑𝐺 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
9329, 40, 41, 42, 5, 45, 48pi1xfr 23662 . . 3 (𝜑 → ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∈ (𝑄 GrpHom 𝑃))
9492, 93eqeltrd 2916 . 2 (𝜑𝐺 ∈ (𝑄 GrpHom 𝑃))
9591, 94jca 514 1 (𝜑 → (𝐺 = 𝐻𝐺 ∈ (𝑄 GrpHom 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1536  wcel 2113  Vcvv 3497  wss 3939  cop 4576   cuni 4841  cmpt 5149   × cxp 5556  ccnv 5557  ran crn 5559  Rel wrel 5563  wf 6354  cfv 6358  (class class class)co 7159  [cec 8290  cc 10538  cr 10539  0cc0 10540  1c1 10541  cmin 10873  [,]cicc 12744  Basecbs 16486   GrpHom cghm 18358  TopOnctopon 21521   Cn ccn 21835  IIcii 23486  phcphtpc 23576  *𝑝cpco 23607   π1 cpi1 23610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-ec 8294  df-qs 8298  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-qus 16785  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-grp 18109  df-mulg 18228  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-cn 21838  df-cnp 21839  df-tx 22173  df-hmeo 22366  df-xms 22933  df-ms 22934  df-tms 22935  df-ii 23488  df-htpy 23577  df-phtpy 23578  df-phtpc 23599  df-pco 23612  df-om1 23613  df-pi1 23615
This theorem is referenced by:  pi1xfrgim  23665
  Copyright terms: Public domain W3C validator