Step | Hyp | Ref
| Expression |
1 | | pi1xfr.p |
. . . 4
β’ π = (π½ Ο1 (πΉβ0)) |
2 | | pi1xfr.q |
. . . 4
β’ π = (π½ Ο1 (πΉβ1)) |
3 | | pi1xfr.b |
. . . 4
β’ π΅ = (Baseβπ) |
4 | | pi1xfr.g |
. . . 4
β’ πΊ = ran (π β βͺ π΅ β¦ β¨[π](
βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½)β©) |
5 | | pi1xfr.j |
. . . 4
β’ (π β π½ β (TopOnβπ)) |
6 | | pi1xfr.f |
. . . 4
β’ (π β πΉ β (II Cn π½)) |
7 | | pi1xfr.i |
. . . 4
β’ πΌ = (π₯ β (0[,]1) β¦ (πΉβ(1 β π₯))) |
8 | | pi1xfrcnv.h |
. . . 4
β’ π» = ran (β β βͺ
(Baseβπ) β¦
β¨[β](
βphβπ½), [(πΉ(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | pi1xfrcnvlem 24904 |
. . 3
β’ (π β β‘πΊ β π») |
10 | | fvex 6894 |
. . . . . . . 8
β’ (
βphβπ½) β V |
11 | | ecexg 8702 |
. . . . . . . 8
β’ ((
βphβπ½) β V β [β]( βphβπ½) β V) |
12 | 10, 11 | mp1i 13 |
. . . . . . 7
β’ ((π β§ β β βͺ
(Baseβπ)) β
[β](
βphβπ½) β V) |
13 | | ecexg 8702 |
. . . . . . . 8
β’ ((
βphβπ½) β V β [(πΉ(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½) β V) |
14 | 10, 13 | mp1i 13 |
. . . . . . 7
β’ ((π β§ β β βͺ
(Baseβπ)) β
[(πΉ(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½) β V) |
15 | 8, 12, 14 | fliftrel 7297 |
. . . . . 6
β’ (π β π» β (V Γ V)) |
16 | | df-rel 5673 |
. . . . . 6
β’ (Rel
π» β π» β (V Γ V)) |
17 | 15, 16 | sylibr 233 |
. . . . 5
β’ (π β Rel π») |
18 | | dfrel2 6178 |
. . . . 5
β’ (Rel
π» β β‘β‘π» = π») |
19 | 17, 18 | sylib 217 |
. . . 4
β’ (π β β‘β‘π» = π») |
20 | | 0elunit 13442 |
. . . . . . . . . 10
β’ 0 β
(0[,]1) |
21 | | oveq2 7409 |
. . . . . . . . . . . . 13
β’ (π₯ = 0 β (1 β π₯) = (1 β
0)) |
22 | | 1m0e1 12329 |
. . . . . . . . . . . . 13
β’ (1
β 0) = 1 |
23 | 21, 22 | eqtrdi 2780 |
. . . . . . . . . . . 12
β’ (π₯ = 0 β (1 β π₯) = 1) |
24 | 23 | fveq2d 6885 |
. . . . . . . . . . 11
β’ (π₯ = 0 β (πΉβ(1 β π₯)) = (πΉβ1)) |
25 | | fvex 6894 |
. . . . . . . . . . 11
β’ (πΉβ1) β
V |
26 | 24, 7, 25 | fvmpt 6988 |
. . . . . . . . . 10
β’ (0 β
(0[,]1) β (πΌβ0)
= (πΉβ1)) |
27 | 20, 26 | ax-mp 5 |
. . . . . . . . 9
β’ (πΌβ0) = (πΉβ1) |
28 | 27 | oveq2i 7412 |
. . . . . . . 8
β’ (π½ Ο1 (πΌβ0)) = (π½ Ο1 (πΉβ1)) |
29 | 2, 28 | eqtr4i 2755 |
. . . . . . 7
β’ π = (π½ Ο1 (πΌβ0)) |
30 | | 1elunit 13443 |
. . . . . . . . . 10
β’ 1 β
(0[,]1) |
31 | | oveq2 7409 |
. . . . . . . . . . . . 13
β’ (π₯ = 1 β (1 β π₯) = (1 β
1)) |
32 | 31 | fveq2d 6885 |
. . . . . . . . . . . 12
β’ (π₯ = 1 β (πΉβ(1 β π₯)) = (πΉβ(1 β 1))) |
33 | | 1m1e0 12280 |
. . . . . . . . . . . . 13
β’ (1
β 1) = 0 |
34 | 33 | fveq2i 6884 |
. . . . . . . . . . . 12
β’ (πΉβ(1 β 1)) = (πΉβ0) |
35 | 32, 34 | eqtrdi 2780 |
. . . . . . . . . . 11
β’ (π₯ = 1 β (πΉβ(1 β π₯)) = (πΉβ0)) |
36 | | fvex 6894 |
. . . . . . . . . . 11
β’ (πΉβ0) β
V |
37 | 35, 7, 36 | fvmpt 6988 |
. . . . . . . . . 10
β’ (1 β
(0[,]1) β (πΌβ1)
= (πΉβ0)) |
38 | 30, 37 | ax-mp 5 |
. . . . . . . . 9
β’ (πΌβ1) = (πΉβ0) |
39 | 38 | oveq2i 7412 |
. . . . . . . 8
β’ (π½ Ο1 (πΌβ1)) = (π½ Ο1 (πΉβ0)) |
40 | 1, 39 | eqtr4i 2755 |
. . . . . . 7
β’ π = (π½ Ο1 (πΌβ1)) |
41 | | eqid 2724 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
42 | | eqid 2724 |
. . . . . . 7
β’ ran
(β β βͺ (Baseβπ) β¦ β¨[β]( βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©) = ran (β β βͺ (Baseβπ) β¦ β¨[β]( βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©) |
43 | 7 | pcorevcl 24873 |
. . . . . . . . 9
β’ (πΉ β (II Cn π½) β (πΌ β (II Cn π½) β§ (πΌβ0) = (πΉβ1) β§ (πΌβ1) = (πΉβ0))) |
44 | 6, 43 | syl 17 |
. . . . . . . 8
β’ (π β (πΌ β (II Cn π½) β§ (πΌβ0) = (πΉβ1) β§ (πΌβ1) = (πΉβ0))) |
45 | 44 | simp1d 1139 |
. . . . . . 7
β’ (π β πΌ β (II Cn π½)) |
46 | | oveq2 7409 |
. . . . . . . . 9
β’ (π§ = π¦ β (1 β π§) = (1 β π¦)) |
47 | 46 | fveq2d 6885 |
. . . . . . . 8
β’ (π§ = π¦ β (πΌβ(1 β π§)) = (πΌβ(1 β π¦))) |
48 | 47 | cbvmptv 5251 |
. . . . . . 7
β’ (π§ β (0[,]1) β¦ (πΌβ(1 β π§))) = (π¦ β (0[,]1) β¦ (πΌβ(1 β π¦))) |
49 | | eqid 2724 |
. . . . . . 7
β’ ran
(π β βͺ (Baseβπ) β¦ β¨[π]( βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§)))))](
βphβπ½)β©) = ran (π β βͺ
(Baseβπ) β¦
β¨[π](
βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§)))))](
βphβπ½)β©) |
50 | 29, 40, 41, 42, 5, 45, 48, 49 | pi1xfrcnvlem 24904 |
. . . . . 6
β’ (π β β‘ran (β β βͺ
(Baseβπ) β¦
β¨[β](
βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©) β ran (π β βͺ (Baseβπ) β¦ β¨[π]( βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§)))))](
βphβπ½)β©)) |
51 | | iitopon 24720 |
. . . . . . . . . . . . . . . 16
β’ II β
(TopOnβ(0[,]1)) |
52 | | cnf2 23074 |
. . . . . . . . . . . . . . . 16
β’ ((II
β (TopOnβ(0[,]1)) β§ π½ β (TopOnβπ) β§ πΉ β (II Cn π½)) β πΉ:(0[,]1)βΆπ) |
53 | 51, 5, 6, 52 | mp3an2i 1462 |
. . . . . . . . . . . . . . 15
β’ (π β πΉ:(0[,]1)βΆπ) |
54 | 53 | feqmptd 6950 |
. . . . . . . . . . . . . 14
β’ (π β πΉ = (π§ β (0[,]1) β¦ (πΉβπ§))) |
55 | | iirev 24771 |
. . . . . . . . . . . . . . . . 17
β’ (π§ β (0[,]1) β (1
β π§) β
(0[,]1)) |
56 | | oveq2 7409 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ = (1 β π§) β (1 β π₯) = (1 β (1 β π§))) |
57 | 56 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . 18
β’ (π₯ = (1 β π§) β (πΉβ(1 β π₯)) = (πΉβ(1 β (1 β π§)))) |
58 | | fvex 6894 |
. . . . . . . . . . . . . . . . . 18
β’ (πΉβ(1 β (1 β
π§))) β
V |
59 | 57, 7, 58 | fvmpt 6988 |
. . . . . . . . . . . . . . . . 17
β’ ((1
β π§) β (0[,]1)
β (πΌβ(1 β
π§)) = (πΉβ(1 β (1 β π§)))) |
60 | 55, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (π§ β (0[,]1) β (πΌβ(1 β π§)) = (πΉβ(1 β (1 β π§)))) |
61 | | ax-1cn 11163 |
. . . . . . . . . . . . . . . . . 18
β’ 1 β
β |
62 | | unitssre 13472 |
. . . . . . . . . . . . . . . . . . . 20
β’ (0[,]1)
β β |
63 | 62 | sseli 3970 |
. . . . . . . . . . . . . . . . . . 19
β’ (π§ β (0[,]1) β π§ β
β) |
64 | 63 | recnd 11238 |
. . . . . . . . . . . . . . . . . 18
β’ (π§ β (0[,]1) β π§ β
β) |
65 | | nncan 11485 |
. . . . . . . . . . . . . . . . . 18
β’ ((1
β β β§ π§
β β) β (1 β (1 β π§)) = π§) |
66 | 61, 64, 65 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
β’ (π§ β (0[,]1) β (1
β (1 β π§)) =
π§) |
67 | 66 | fveq2d 6885 |
. . . . . . . . . . . . . . . 16
β’ (π§ β (0[,]1) β (πΉβ(1 β (1 β
π§))) = (πΉβπ§)) |
68 | 60, 67 | eqtrd 2764 |
. . . . . . . . . . . . . . 15
β’ (π§ β (0[,]1) β (πΌβ(1 β π§)) = (πΉβπ§)) |
69 | 68 | mpteq2ia 5241 |
. . . . . . . . . . . . . 14
β’ (π§ β (0[,]1) β¦ (πΌβ(1 β π§))) = (π§ β (0[,]1) β¦ (πΉβπ§)) |
70 | 54, 69 | eqtr4di 2782 |
. . . . . . . . . . . . 13
β’ (π β πΉ = (π§ β (0[,]1) β¦ (πΌβ(1 β π§)))) |
71 | 70 | oveq1d 7416 |
. . . . . . . . . . . 12
β’ (π β (πΉ(*πβπ½)(β(*πβπ½)πΌ)) = ((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))) |
72 | 71 | eceq1d 8737 |
. . . . . . . . . . 11
β’ (π β [(πΉ(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½) = [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)) |
73 | 72 | opeq2d 4872 |
. . . . . . . . . 10
β’ (π β β¨[β]( βphβπ½), [(πΉ(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β© = β¨[β](
βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©) |
74 | 73 | mpteq2dv 5240 |
. . . . . . . . 9
β’ (π β (β β βͺ
(Baseβπ) β¦
β¨[β](
βphβπ½), [(πΉ(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©) = (β β βͺ
(Baseβπ) β¦
β¨[β](
βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©)) |
75 | 74 | rneqd 5927 |
. . . . . . . 8
β’ (π β ran (β β βͺ
(Baseβπ) β¦
β¨[β](
βphβπ½), [(πΉ(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©) = ran (β β βͺ (Baseβπ) β¦ β¨[β]( βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©)) |
76 | 8, 75 | eqtrid 2776 |
. . . . . . 7
β’ (π β π» = ran (β β βͺ
(Baseβπ) β¦
β¨[β](
βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©)) |
77 | 76 | cnveqd 5865 |
. . . . . 6
β’ (π β β‘π» = β‘ran (β β βͺ
(Baseβπ) β¦
β¨[β](
βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©)) |
78 | 3 | a1i 11 |
. . . . . . . . . 10
β’ (π β π΅ = (Baseβπ)) |
79 | 78 | unieqd 4912 |
. . . . . . . . 9
β’ (π β βͺ π΅ =
βͺ (Baseβπ)) |
80 | 70 | oveq2d 7417 |
. . . . . . . . . . . 12
β’ (π β (π(*πβπ½)πΉ) = (π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§))))) |
81 | 80 | oveq2d 7417 |
. . . . . . . . . . 11
β’ (π β (πΌ(*πβπ½)(π(*πβπ½)πΉ)) = (πΌ(*πβπ½)(π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§)))))) |
82 | 81 | eceq1d 8737 |
. . . . . . . . . 10
β’ (π β [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½) = [(πΌ(*πβπ½)(π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§)))))](
βphβπ½)) |
83 | 82 | opeq2d 4872 |
. . . . . . . . 9
β’ (π β β¨[π]( βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½)β© = β¨[π](
βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§)))))](
βphβπ½)β©) |
84 | 79, 83 | mpteq12dv 5229 |
. . . . . . . 8
β’ (π β (π β βͺ π΅ β¦ β¨[π](
βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½)β©) = (π β βͺ
(Baseβπ) β¦
β¨[π](
βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§)))))](
βphβπ½)β©)) |
85 | 84 | rneqd 5927 |
. . . . . . 7
β’ (π β ran (π β βͺ π΅ β¦ β¨[π](
βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)πΉ))]( βphβπ½)β©) = ran (π β βͺ (Baseβπ) β¦ β¨[π]( βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§)))))](
βphβπ½)β©)) |
86 | 4, 85 | eqtrid 2776 |
. . . . . 6
β’ (π β πΊ = ran (π β βͺ
(Baseβπ) β¦
β¨[π](
βphβπ½), [(πΌ(*πβπ½)(π(*πβπ½)(π§ β (0[,]1) β¦ (πΌβ(1 β π§)))))](
βphβπ½)β©)) |
87 | 50, 77, 86 | 3sstr4d 4021 |
. . . . 5
β’ (π β β‘π» β πΊ) |
88 | | cnvss 5862 |
. . . . 5
β’ (β‘π» β πΊ β β‘β‘π» β β‘πΊ) |
89 | 87, 88 | syl 17 |
. . . 4
β’ (π β β‘β‘π» β β‘πΊ) |
90 | 19, 89 | eqsstrrd 4013 |
. . 3
β’ (π β π» β β‘πΊ) |
91 | 9, 90 | eqssd 3991 |
. 2
β’ (π β β‘πΊ = π») |
92 | 91, 76 | eqtrd 2764 |
. . 3
β’ (π β β‘πΊ = ran (β β βͺ
(Baseβπ) β¦
β¨[β](
βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©)) |
93 | 29, 40, 41, 42, 5, 45, 48 | pi1xfr 24903 |
. . 3
β’ (π β ran (β β βͺ
(Baseβπ) β¦
β¨[β](
βphβπ½), [((π§ β (0[,]1) β¦ (πΌβ(1 β π§)))(*πβπ½)(β(*πβπ½)πΌ))]( βphβπ½)β©) β (π GrpHom π)) |
94 | 92, 93 | eqeltrd 2825 |
. 2
β’ (π β β‘πΊ β (π GrpHom π)) |
95 | 91, 94 | jca 511 |
1
β’ (π β (β‘πΊ = π» β§ β‘πΊ β (π GrpHom π))) |