MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pi1xfrcnv Structured version   Visualization version   GIF version

Theorem pi1xfrcnv 24220
Description: Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
pi1xfr.p 𝑃 = (𝐽 π1 (𝐹‘0))
pi1xfr.q 𝑄 = (𝐽 π1 (𝐹‘1))
pi1xfr.b 𝐵 = (Base‘𝑃)
pi1xfr.g 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
pi1xfr.j (𝜑𝐽 ∈ (TopOn‘𝑋))
pi1xfr.f (𝜑𝐹 ∈ (II Cn 𝐽))
pi1xfr.i 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
pi1xfrcnv.h 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
Assertion
Ref Expression
pi1xfrcnv (𝜑 → (𝐺 = 𝐻𝐺 ∈ (𝑄 GrpHom 𝑃)))
Distinct variable groups:   𝑔,,𝑥,𝐵   𝑔,𝐹,,𝑥   𝑔,𝐼,,𝑥   ,𝐺   𝜑,𝑔,,𝑥   𝑔,𝐽,,𝑥   𝑃,𝑔,,𝑥   𝑄,𝑔,,𝑥
Allowed substitution hints:   𝐺(𝑥,𝑔)   𝐻(𝑥,𝑔,)   𝑋(𝑥,𝑔,)

Proof of Theorem pi1xfrcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pi1xfr.p . . . 4 𝑃 = (𝐽 π1 (𝐹‘0))
2 pi1xfr.q . . . 4 𝑄 = (𝐽 π1 (𝐹‘1))
3 pi1xfr.b . . . 4 𝐵 = (Base‘𝑃)
4 pi1xfr.g . . . 4 𝐺 = ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩)
5 pi1xfr.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
6 pi1xfr.f . . . 4 (𝜑𝐹 ∈ (II Cn 𝐽))
7 pi1xfr.i . . . 4 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥)))
8 pi1xfrcnv.h . . . 4 𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
91, 2, 3, 4, 5, 6, 7, 8pi1xfrcnvlem 24219 . . 3 (𝜑𝐺𝐻)
10 fvex 6787 . . . . . . . 8 ( ≃ph𝐽) ∈ V
11 ecexg 8502 . . . . . . . 8 (( ≃ph𝐽) ∈ V → []( ≃ph𝐽) ∈ V)
1210, 11mp1i 13 . . . . . . 7 ((𝜑 (Base‘𝑄)) → []( ≃ph𝐽) ∈ V)
13 ecexg 8502 . . . . . . . 8 (( ≃ph𝐽) ∈ V → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) ∈ V)
1410, 13mp1i 13 . . . . . . 7 ((𝜑 (Base‘𝑄)) → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) ∈ V)
158, 12, 14fliftrel 7179 . . . . . 6 (𝜑𝐻 ⊆ (V × V))
16 df-rel 5596 . . . . . 6 (Rel 𝐻𝐻 ⊆ (V × V))
1715, 16sylibr 233 . . . . 5 (𝜑 → Rel 𝐻)
18 dfrel2 6092 . . . . 5 (Rel 𝐻𝐻 = 𝐻)
1917, 18sylib 217 . . . 4 (𝜑𝐻 = 𝐻)
20 0elunit 13201 . . . . . . . . . 10 0 ∈ (0[,]1)
21 oveq2 7283 . . . . . . . . . . . . 13 (𝑥 = 0 → (1 − 𝑥) = (1 − 0))
22 1m0e1 12094 . . . . . . . . . . . . 13 (1 − 0) = 1
2321, 22eqtrdi 2794 . . . . . . . . . . . 12 (𝑥 = 0 → (1 − 𝑥) = 1)
2423fveq2d 6778 . . . . . . . . . . 11 (𝑥 = 0 → (𝐹‘(1 − 𝑥)) = (𝐹‘1))
25 fvex 6787 . . . . . . . . . . 11 (𝐹‘1) ∈ V
2624, 7, 25fvmpt 6875 . . . . . . . . . 10 (0 ∈ (0[,]1) → (𝐼‘0) = (𝐹‘1))
2720, 26ax-mp 5 . . . . . . . . 9 (𝐼‘0) = (𝐹‘1)
2827oveq2i 7286 . . . . . . . 8 (𝐽 π1 (𝐼‘0)) = (𝐽 π1 (𝐹‘1))
292, 28eqtr4i 2769 . . . . . . 7 𝑄 = (𝐽 π1 (𝐼‘0))
30 1elunit 13202 . . . . . . . . . 10 1 ∈ (0[,]1)
31 oveq2 7283 . . . . . . . . . . . . 13 (𝑥 = 1 → (1 − 𝑥) = (1 − 1))
3231fveq2d 6778 . . . . . . . . . . . 12 (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − 1)))
33 1m1e0 12045 . . . . . . . . . . . . 13 (1 − 1) = 0
3433fveq2i 6777 . . . . . . . . . . . 12 (𝐹‘(1 − 1)) = (𝐹‘0)
3532, 34eqtrdi 2794 . . . . . . . . . . 11 (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘0))
36 fvex 6787 . . . . . . . . . . 11 (𝐹‘0) ∈ V
3735, 7, 36fvmpt 6875 . . . . . . . . . 10 (1 ∈ (0[,]1) → (𝐼‘1) = (𝐹‘0))
3830, 37ax-mp 5 . . . . . . . . 9 (𝐼‘1) = (𝐹‘0)
3938oveq2i 7286 . . . . . . . 8 (𝐽 π1 (𝐼‘1)) = (𝐽 π1 (𝐹‘0))
401, 39eqtr4i 2769 . . . . . . 7 𝑃 = (𝐽 π1 (𝐼‘1))
41 eqid 2738 . . . . . . 7 (Base‘𝑄) = (Base‘𝑄)
42 eqid 2738 . . . . . . 7 ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
437pcorevcl 24188 . . . . . . . . 9 (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
446, 43syl 17 . . . . . . . 8 (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0)))
4544simp1d 1141 . . . . . . 7 (𝜑𝐼 ∈ (II Cn 𝐽))
46 oveq2 7283 . . . . . . . . 9 (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦))
4746fveq2d 6778 . . . . . . . 8 (𝑧 = 𝑦 → (𝐼‘(1 − 𝑧)) = (𝐼‘(1 − 𝑦)))
4847cbvmptv 5187 . . . . . . 7 (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑦 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑦)))
49 eqid 2738 . . . . . . 7 ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩) = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩)
5029, 40, 41, 42, 5, 45, 48, 49pi1xfrcnvlem 24219 . . . . . 6 (𝜑ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ⊆ ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
51 iitopon 24042 . . . . . . . . . . . . . . . 16 II ∈ (TopOn‘(0[,]1))
52 cnf2 22400 . . . . . . . . . . . . . . . 16 ((II ∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋)
5351, 5, 6, 52mp3an2i 1465 . . . . . . . . . . . . . . 15 (𝜑𝐹:(0[,]1)⟶𝑋)
5453feqmptd 6837 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐹𝑧)))
55 iirev 24092 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (0[,]1) → (1 − 𝑧) ∈ (0[,]1))
56 oveq2 7283 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (1 − 𝑧) → (1 − 𝑥) = (1 − (1 − 𝑧)))
5756fveq2d 6778 . . . . . . . . . . . . . . . . . 18 (𝑥 = (1 − 𝑧) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑧))))
58 fvex 6787 . . . . . . . . . . . . . . . . . 18 (𝐹‘(1 − (1 − 𝑧))) ∈ V
5957, 7, 58fvmpt 6875 . . . . . . . . . . . . . . . . 17 ((1 − 𝑧) ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧))))
6055, 59syl 17 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧))))
61 ax-1cn 10929 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
62 unitssre 13231 . . . . . . . . . . . . . . . . . . . 20 (0[,]1) ⊆ ℝ
6362sseli 3917 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
6463recnd 11003 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℂ)
65 nncan 11250 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (1 − (1 − 𝑧)) = 𝑧)
6661, 64, 65sylancr 587 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ (0[,]1) → (1 − (1 − 𝑧)) = 𝑧)
6766fveq2d 6778 . . . . . . . . . . . . . . . 16 (𝑧 ∈ (0[,]1) → (𝐹‘(1 − (1 − 𝑧))) = (𝐹𝑧))
6860, 67eqtrd 2778 . . . . . . . . . . . . . . 15 (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹𝑧))
6968mpteq2ia 5177 . . . . . . . . . . . . . 14 (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝐹𝑧))
7054, 69eqtr4di 2796 . . . . . . . . . . . . 13 (𝜑𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))
7170oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → (𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼)) = ((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼)))
7271eceq1d 8537 . . . . . . . . . . 11 (𝜑 → [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽) = [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽))
7372opeq2d 4811 . . . . . . . . . 10 (𝜑 → ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩ = ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩)
7473mpteq2dv 5176 . . . . . . . . 9 (𝜑 → ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
7574rneqd 5847 . . . . . . . 8 (𝜑 → ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [(𝐹(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
768, 75eqtrid 2790 . . . . . . 7 (𝜑𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
7776cnveqd 5784 . . . . . 6 (𝜑𝐻 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
783a1i 11 . . . . . . . . . 10 (𝜑𝐵 = (Base‘𝑃))
7978unieqd 4853 . . . . . . . . 9 (𝜑 𝐵 = (Base‘𝑃))
8070oveq2d 7291 . . . . . . . . . . . 12 (𝜑 → (𝑔(*𝑝𝐽)𝐹) = (𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))
8180oveq2d 7291 . . . . . . . . . . 11 (𝜑 → (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹)) = (𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))))
8281eceq1d 8537 . . . . . . . . . 10 (𝜑 → [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽) = [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽))
8382opeq2d 4811 . . . . . . . . 9 (𝜑 → ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩ = ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩)
8479, 83mpteq12dv 5165 . . . . . . . 8 (𝜑 → (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩) = (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
8584rneqd 5847 . . . . . . 7 (𝜑 → ran (𝑔 𝐵 ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)𝐹))]( ≃ph𝐽)⟩) = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
864, 85eqtrid 2790 . . . . . 6 (𝜑𝐺 = ran (𝑔 (Base‘𝑃) ↦ ⟨[𝑔]( ≃ph𝐽), [(𝐼(*𝑝𝐽)(𝑔(*𝑝𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))]( ≃ph𝐽)⟩))
8750, 77, 863sstr4d 3968 . . . . 5 (𝜑𝐻𝐺)
88 cnvss 5781 . . . . 5 (𝐻𝐺𝐻𝐺)
8987, 88syl 17 . . . 4 (𝜑𝐻𝐺)
9019, 89eqsstrrd 3960 . . 3 (𝜑𝐻𝐺)
919, 90eqssd 3938 . 2 (𝜑𝐺 = 𝐻)
9291, 76eqtrd 2778 . . 3 (𝜑𝐺 = ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩))
9329, 40, 41, 42, 5, 45, 48pi1xfr 24218 . . 3 (𝜑 → ran ( (Base‘𝑄) ↦ ⟨[]( ≃ph𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝𝐽)((*𝑝𝐽)𝐼))]( ≃ph𝐽)⟩) ∈ (𝑄 GrpHom 𝑃))
9492, 93eqeltrd 2839 . 2 (𝜑𝐺 ∈ (𝑄 GrpHom 𝑃))
9591, 94jca 512 1 (𝜑 → (𝐺 = 𝐻𝐺 ∈ (𝑄 GrpHom 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  cop 4567   cuni 4839  cmpt 5157   × cxp 5587  ccnv 5588  ran crn 5590  Rel wrel 5594  wf 6429  cfv 6433  (class class class)co 7275  [cec 8496  cc 10869  cr 10870  0cc0 10871  1c1 10872  cmin 11205  [,]cicc 13082  Basecbs 16912   GrpHom cghm 18831  TopOnctopon 22059   Cn ccn 22375  IIcii 24038  phcphtpc 24132  *𝑝cpco 24163   π1 cpi1 24166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-ec 8500  df-qs 8504  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-qus 17220  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-mulg 18701  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-cn 22378  df-cnp 22379  df-tx 22713  df-hmeo 22906  df-xms 23473  df-ms 23474  df-tms 23475  df-ii 24040  df-htpy 24133  df-phtpy 24134  df-phtpc 24155  df-pco 24168  df-om1 24169  df-pi1 24171
This theorem is referenced by:  pi1xfrgim  24221
  Copyright terms: Public domain W3C validator