Step | Hyp | Ref
| Expression |
1 | | pi1xfr.p |
. . . 4
⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) |
2 | | pi1xfr.q |
. . . 4
⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) |
3 | | pi1xfr.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
4 | | pi1xfr.g |
. . . 4
⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) |
5 | | pi1xfr.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
6 | | pi1xfr.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) |
7 | | pi1xfr.i |
. . . 4
⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) |
8 | | pi1xfrcnv.h |
. . . 4
⊢ 𝐻 = ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | pi1xfrcnvlem 24125 |
. . 3
⊢ (𝜑 → ◡𝐺 ⊆ 𝐻) |
10 | | fvex 6769 |
. . . . . . . 8
⊢ (
≃ph‘𝐽) ∈ V |
11 | | ecexg 8460 |
. . . . . . . 8
⊢ ((
≃ph‘𝐽) ∈ V → [ℎ]( ≃ph‘𝐽) ∈ V) |
12 | 10, 11 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ ∪
(Base‘𝑄)) →
[ℎ](
≃ph‘𝐽) ∈ V) |
13 | | ecexg 8460 |
. . . . . . . 8
⊢ ((
≃ph‘𝐽) ∈ V → [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽) ∈ V) |
14 | 10, 13 | mp1i 13 |
. . . . . . 7
⊢ ((𝜑 ∧ ℎ ∈ ∪
(Base‘𝑄)) →
[(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽) ∈ V) |
15 | 8, 12, 14 | fliftrel 7159 |
. . . . . 6
⊢ (𝜑 → 𝐻 ⊆ (V × V)) |
16 | | df-rel 5587 |
. . . . . 6
⊢ (Rel
𝐻 ↔ 𝐻 ⊆ (V × V)) |
17 | 15, 16 | sylibr 233 |
. . . . 5
⊢ (𝜑 → Rel 𝐻) |
18 | | dfrel2 6081 |
. . . . 5
⊢ (Rel
𝐻 ↔ ◡◡𝐻 = 𝐻) |
19 | 17, 18 | sylib 217 |
. . . 4
⊢ (𝜑 → ◡◡𝐻 = 𝐻) |
20 | | 0elunit 13130 |
. . . . . . . . . 10
⊢ 0 ∈
(0[,]1) |
21 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 0 → (1 − 𝑥) = (1 −
0)) |
22 | | 1m0e1 12024 |
. . . . . . . . . . . . 13
⊢ (1
− 0) = 1 |
23 | 21, 22 | eqtrdi 2795 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → (1 − 𝑥) = 1) |
24 | 23 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (𝐹‘(1 − 𝑥)) = (𝐹‘1)) |
25 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐹‘1) ∈
V |
26 | 24, 7, 25 | fvmpt 6857 |
. . . . . . . . . 10
⊢ (0 ∈
(0[,]1) → (𝐼‘0)
= (𝐹‘1)) |
27 | 20, 26 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐼‘0) = (𝐹‘1) |
28 | 27 | oveq2i 7266 |
. . . . . . . 8
⊢ (𝐽 π1 (𝐼‘0)) = (𝐽 π1 (𝐹‘1)) |
29 | 2, 28 | eqtr4i 2769 |
. . . . . . 7
⊢ 𝑄 = (𝐽 π1 (𝐼‘0)) |
30 | | 1elunit 13131 |
. . . . . . . . . 10
⊢ 1 ∈
(0[,]1) |
31 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (1 − 𝑥) = (1 −
1)) |
32 | 31 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − 1))) |
33 | | 1m1e0 11975 |
. . . . . . . . . . . . 13
⊢ (1
− 1) = 0 |
34 | 33 | fveq2i 6759 |
. . . . . . . . . . . 12
⊢ (𝐹‘(1 − 1)) = (𝐹‘0) |
35 | 32, 34 | eqtrdi 2795 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝐹‘(1 − 𝑥)) = (𝐹‘0)) |
36 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝐹‘0) ∈
V |
37 | 35, 7, 36 | fvmpt 6857 |
. . . . . . . . . 10
⊢ (1 ∈
(0[,]1) → (𝐼‘1)
= (𝐹‘0)) |
38 | 30, 37 | ax-mp 5 |
. . . . . . . . 9
⊢ (𝐼‘1) = (𝐹‘0) |
39 | 38 | oveq2i 7266 |
. . . . . . . 8
⊢ (𝐽 π1 (𝐼‘1)) = (𝐽 π1 (𝐹‘0)) |
40 | 1, 39 | eqtr4i 2769 |
. . . . . . 7
⊢ 𝑃 = (𝐽 π1 (𝐼‘1)) |
41 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑄) =
(Base‘𝑄) |
42 | | eqid 2738 |
. . . . . . 7
⊢ ran
(ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) |
43 | 7 | pcorevcl 24094 |
. . . . . . . . 9
⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
44 | 6, 43 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐼 ∈ (II Cn 𝐽) ∧ (𝐼‘0) = (𝐹‘1) ∧ (𝐼‘1) = (𝐹‘0))) |
45 | 44 | simp1d 1140 |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) |
46 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑧 = 𝑦 → (1 − 𝑧) = (1 − 𝑦)) |
47 | 46 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑧 = 𝑦 → (𝐼‘(1 − 𝑧)) = (𝐼‘(1 − 𝑦))) |
48 | 47 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑦 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑦))) |
49 | | eqid 2738 |
. . . . . . 7
⊢ ran
(𝑔 ∈ ∪ (Base‘𝑃) ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉) = ran (𝑔 ∈ ∪
(Base‘𝑃) ↦
〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉) |
50 | 29, 40, 41, 42, 5, 45, 48, 49 | pi1xfrcnvlem 24125 |
. . . . . 6
⊢ (𝜑 → ◡ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ⊆ ran (𝑔 ∈ ∪ (Base‘𝑃) ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉)) |
51 | | iitopon 23948 |
. . . . . . . . . . . . . . . 16
⊢ II ∈
(TopOn‘(0[,]1)) |
52 | | cnf2 22308 |
. . . . . . . . . . . . . . . 16
⊢ ((II
∈ (TopOn‘(0[,]1)) ∧ 𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (II Cn 𝐽)) → 𝐹:(0[,]1)⟶𝑋) |
53 | 51, 5, 6, 52 | mp3an2i 1464 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:(0[,]1)⟶𝑋) |
54 | 53 | feqmptd 6819 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐹‘𝑧))) |
55 | | iirev 23998 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (0[,]1) → (1
− 𝑧) ∈
(0[,]1)) |
56 | | oveq2 7263 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = (1 − 𝑧) → (1 − 𝑥) = (1 − (1 − 𝑧))) |
57 | 56 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = (1 − 𝑧) → (𝐹‘(1 − 𝑥)) = (𝐹‘(1 − (1 − 𝑧)))) |
58 | | fvex 6769 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐹‘(1 − (1 −
𝑧))) ∈
V |
59 | 57, 7, 58 | fvmpt 6857 |
. . . . . . . . . . . . . . . . 17
⊢ ((1
− 𝑧) ∈ (0[,]1)
→ (𝐼‘(1 −
𝑧)) = (𝐹‘(1 − (1 − 𝑧)))) |
60 | 55, 59 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘(1 − (1 − 𝑧)))) |
61 | | ax-1cn 10860 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℂ |
62 | | unitssre 13160 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (0[,]1)
⊆ ℝ |
63 | 62 | sseli 3913 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ (0[,]1) → 𝑧 ∈
ℝ) |
64 | 63 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ (0[,]1) → 𝑧 ∈
ℂ) |
65 | | nncan 11180 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℂ ∧ 𝑧
∈ ℂ) → (1 − (1 − 𝑧)) = 𝑧) |
66 | 61, 64, 65 | sylancr 586 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 ∈ (0[,]1) → (1
− (1 − 𝑧)) =
𝑧) |
67 | 66 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 ∈ (0[,]1) → (𝐹‘(1 − (1 −
𝑧))) = (𝐹‘𝑧)) |
68 | 60, 67 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ (0[,]1) → (𝐼‘(1 − 𝑧)) = (𝐹‘𝑧)) |
69 | 68 | mpteq2ia 5173 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))) = (𝑧 ∈ (0[,]1) ↦ (𝐹‘𝑧)) |
70 | 54, 69 | eqtr4di 2797 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 = (𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))) |
71 | 70 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼)) = ((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))) |
72 | 71 | eceq1d 8495 |
. . . . . . . . . . 11
⊢ (𝜑 → [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽) = [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)) |
73 | 72 | opeq2d 4808 |
. . . . . . . . . 10
⊢ (𝜑 → 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉 = 〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) |
74 | 73 | mpteq2dv 5172 |
. . . . . . . . 9
⊢ (𝜑 → (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) = (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
75 | 74 | rneqd 5836 |
. . . . . . . 8
⊢ (𝜑 → ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
76 | 8, 75 | eqtrid 2790 |
. . . . . . 7
⊢ (𝜑 → 𝐻 = ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
77 | 76 | cnveqd 5773 |
. . . . . 6
⊢ (𝜑 → ◡𝐻 = ◡ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
78 | 3 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
79 | 78 | unieqd 4850 |
. . . . . . . . 9
⊢ (𝜑 → ∪ 𝐵 =
∪ (Base‘𝑃)) |
80 | 70 | oveq2d 7271 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑔(*𝑝‘𝐽)𝐹) = (𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧))))) |
81 | 80 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹)) = (𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))) |
82 | 81 | eceq1d 8495 |
. . . . . . . . . 10
⊢ (𝜑 → [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽) = [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)) |
83 | 82 | opeq2d 4808 |
. . . . . . . . 9
⊢ (𝜑 → 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉 = 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉) |
84 | 79, 83 | mpteq12dv 5161 |
. . . . . . . 8
⊢ (𝜑 → (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) = (𝑔 ∈ ∪
(Base‘𝑃) ↦
〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉)) |
85 | 84 | rneqd 5836 |
. . . . . . 7
⊢ (𝜑 → ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) = ran (𝑔 ∈ ∪ (Base‘𝑃) ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉)) |
86 | 4, 85 | eqtrid 2790 |
. . . . . 6
⊢ (𝜑 → 𝐺 = ran (𝑔 ∈ ∪
(Base‘𝑃) ↦
〈[𝑔](
≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)(𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))))](
≃ph‘𝐽)〉)) |
87 | 50, 77, 86 | 3sstr4d 3964 |
. . . . 5
⊢ (𝜑 → ◡𝐻 ⊆ 𝐺) |
88 | | cnvss 5770 |
. . . . 5
⊢ (◡𝐻 ⊆ 𝐺 → ◡◡𝐻 ⊆ ◡𝐺) |
89 | 87, 88 | syl 17 |
. . . 4
⊢ (𝜑 → ◡◡𝐻 ⊆ ◡𝐺) |
90 | 19, 89 | eqsstrrd 3956 |
. . 3
⊢ (𝜑 → 𝐻 ⊆ ◡𝐺) |
91 | 9, 90 | eqssd 3934 |
. 2
⊢ (𝜑 → ◡𝐺 = 𝐻) |
92 | 91, 76 | eqtrd 2778 |
. . 3
⊢ (𝜑 → ◡𝐺 = ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉)) |
93 | 29, 40, 41, 42, 5, 45, 48 | pi1xfr 24124 |
. . 3
⊢ (𝜑 → ran (ℎ ∈ ∪
(Base‘𝑄) ↦
〈[ℎ](
≃ph‘𝐽), [((𝑧 ∈ (0[,]1) ↦ (𝐼‘(1 − 𝑧)))(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ∈ (𝑄 GrpHom 𝑃)) |
94 | 92, 93 | eqeltrd 2839 |
. 2
⊢ (𝜑 → ◡𝐺 ∈ (𝑄 GrpHom 𝑃)) |
95 | 91, 94 | jca 511 |
1
⊢ (𝜑 → (◡𝐺 = 𝐻 ∧ ◡𝐺 ∈ (𝑄 GrpHom 𝑃))) |