MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimnei Structured version   Visualization version   GIF version

Theorem flimnei 23821
Description: A filter contains all of the neighborhoods of its limit points. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.)
Assertion
Ref Expression
flimnei ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝑁 ∈ 𝐹)

Proof of Theorem flimnei
StepHypRef Expression
1 flimneiss 23820 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ ((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹)
21sselda 3977 1 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝐴})) β†’ 𝑁 ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∈ wcel 2098  {csn 4623  β€˜cfv 6536  (class class class)co 7404  neicnei 22951   fLim cflim 23788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-top 22746  df-flim 23793
This theorem is referenced by:  flimclsi  23832  hausflimlem  23833  flimsncls  23840  flimcfil  25192
  Copyright terms: Public domain W3C validator