| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimnei | Structured version Visualization version GIF version | ||
| Description: A filter contains all of the neighborhoods of its limit points. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| flimnei | ⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑁 ∈ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimneiss 23859 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) | |
| 2 | 1 | sselda 3948 | 1 ⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑁 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑁 ∈ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {csn 4591 ‘cfv 6513 (class class class)co 7389 neicnei 22990 fLim cflim 23827 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-iota 6466 df-fun 6515 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-top 22787 df-flim 23832 |
| This theorem is referenced by: flimclsi 23871 hausflimlem 23872 flimsncls 23879 flimcfil 25220 |
| Copyright terms: Public domain | W3C validator |