| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimneiss | Structured version Visualization version GIF version | ||
| Description: A filter contains the neighborhood filter as a subfilter. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
| Ref | Expression |
|---|---|
| flimneiss | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | elflim2 23907 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽) ∧ (𝐴 ∈ ∪ 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 3 | 2 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐴 ∈ ∪ 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) |
| 4 | 3 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3931 𝒫 cpw 4580 {csn 4606 ∪ cuni 4888 ran crn 5660 ‘cfv 6536 (class class class)co 7410 Topctop 22836 neicnei 23040 Filcfil 23788 fLim cflim 23877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-top 22837 df-flim 23882 |
| This theorem is referenced by: flimnei 23910 flimfil 23912 flimss2 23915 flimss1 23916 flimcf 23925 |
| Copyright terms: Public domain | W3C validator |