MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimneiss Structured version   Visualization version   GIF version

Theorem flimneiss 23853
Description: A filter contains the neighborhood filter as a subfilter. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimneiss (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)

Proof of Theorem flimneiss
StepHypRef Expression
1 eqid 2729 . . . 4 𝐽 = 𝐽
21elflim2 23851 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝐽) ∧ (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
32simprbi 496 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐴 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))
43simprd 495 1 (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wss 3914  𝒫 cpw 4563  {csn 4589   cuni 4871  ran crn 5639  cfv 6511  (class class class)co 7387  Topctop 22780  neicnei 22984  Filcfil 23732   fLim cflim 23821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-top 22781  df-flim 23826
This theorem is referenced by:  flimnei  23854  flimfil  23856  flimss2  23859  flimss1  23860  flimcf  23869
  Copyright terms: Public domain W3C validator