MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimneiss Structured version   Visualization version   GIF version

Theorem flimneiss 23691
Description: A filter contains the neighborhood filter as a subfilter. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimneiss (𝐴 ∈ (𝐽 fLim 𝐹) β†’ ((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹)

Proof of Theorem flimneiss
StepHypRef Expression
1 eqid 2731 . . . 4 βˆͺ 𝐽 = βˆͺ 𝐽
21elflim2 23689 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ βˆͺ ran Fil ∧ 𝐹 βŠ† 𝒫 βˆͺ 𝐽) ∧ (𝐴 ∈ βˆͺ 𝐽 ∧ ((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹)))
32simprbi 496 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ (𝐴 ∈ βˆͺ 𝐽 ∧ ((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹))
43simprd 495 1 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ ((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   ∈ wcel 2105   βŠ† wss 3949  π’« cpw 4603  {csn 4629  βˆͺ cuni 4909  ran crn 5678  β€˜cfv 6544  (class class class)co 7412  Topctop 22616  neicnei 22822  Filcfil 23570   fLim cflim 23659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-top 22617  df-flim 23664
This theorem is referenced by:  flimnei  23692  flimfil  23694  flimss2  23697  flimss1  23698  flimcf  23707
  Copyright terms: Public domain W3C validator