| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimneiss | Structured version Visualization version GIF version | ||
| Description: A filter contains the neighborhood filter as a subfilter. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
| Ref | Expression |
|---|---|
| flimneiss | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | elflim2 23879 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 ∪ 𝐽) ∧ (𝐴 ∈ ∪ 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 3 | 2 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐴 ∈ ∪ 𝐽 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) |
| 4 | 3 | simprd 495 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4547 {csn 4573 ∪ cuni 4856 ran crn 5615 ‘cfv 6481 (class class class)co 7346 Topctop 22808 neicnei 23012 Filcfil 23760 fLim cflim 23849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-top 22809 df-flim 23854 |
| This theorem is referenced by: flimnei 23882 flimfil 23884 flimss2 23887 flimss1 23888 flimcf 23897 |
| Copyright terms: Public domain | W3C validator |