MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimsncls Structured version   Visualization version   GIF version

Theorem flimsncls 22594
Description: If 𝐴 is a limit point of the filter 𝐹, then all the points which specialize 𝐴 (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015.)
Assertion
Ref Expression
flimsncls (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹))

Proof of Theorem flimsncls
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 22573 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 eqid 2821 . . . . . . . 8 𝐽 = 𝐽
32flimelbas 22576 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 𝐽)
43snssd 4742 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → {𝐴} ⊆ 𝐽)
52clsss3 21667 . . . . . 6 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽) → ((cls‘𝐽)‘{𝐴}) ⊆ 𝐽)
61, 4, 5syl2anc 586 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ 𝐽)
76sselda 3967 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 𝐽)
8 simpll 765 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴 ∈ (𝐽 fLim 𝐹))
98, 1syl 17 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐽 ∈ Top)
10 simprl 769 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐽)
111adantr 483 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
124adantr 483 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
13 simpr 487 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ ((cls‘𝐽)‘{𝐴}))
1411, 12, 133jca 1124 . . . . . . . . 9 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})))
152clsndisj 21683 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∩ {𝐴}) ≠ ∅)
16 disjsn 4647 . . . . . . . . . . 11 ((𝑦 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝑦)
1716necon2abii 3066 . . . . . . . . . 10 (𝐴𝑦 ↔ (𝑦 ∩ {𝐴}) ≠ ∅)
1815, 17sylibr 236 . . . . . . . . 9 (((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴𝑦)
1914, 18sylan 582 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴𝑦)
20 opnneip 21727 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑦𝐽𝐴𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
219, 10, 19, 20syl3anc 1367 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
22 flimnei 22575 . . . . . . 7 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦𝐹)
238, 21, 22syl2anc 586 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
2423expr 459 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
2524ralrimiva 3182 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
26 toptopon2 21526 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2711, 26sylib 220 . . . . 5 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘ 𝐽))
282flimfil 22577 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
2928adantr 483 . . . . 5 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘ 𝐽))
30 flimopn 22583 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 𝐽 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
3127, 29, 30syl2anc 586 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 𝐽 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
327, 25, 31mpbir2and 711 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ (𝐽 fLim 𝐹))
3332ex 415 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ ((cls‘𝐽)‘{𝐴}) → 𝑥 ∈ (𝐽 fLim 𝐹)))
3433ssrdv 3973 1 (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2114  wne 3016  wral 3138  cin 3935  wss 3936  c0 4291  {csn 4567   cuni 4838  cfv 6355  (class class class)co 7156  Topctop 21501  TopOnctopon 21518  clsccl 21626  neicnei 21705  Filcfil 22453   fLim cflim 22542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-fbas 20542  df-top 21502  df-topon 21519  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-fil 22454  df-flim 22547
This theorem is referenced by:  tsmscls  22746
  Copyright terms: Public domain W3C validator