| Step | Hyp | Ref
| Expression |
| 1 | | flimtop 23973 |
. . . . . 6
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) |
| 2 | | eqid 2737 |
. . . . . . . 8
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 3 | 2 | flimelbas 23976 |
. . . . . . 7
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ ∪ 𝐽) |
| 4 | 3 | snssd 4809 |
. . . . . 6
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → {𝐴} ⊆ ∪ 𝐽) |
| 5 | 2 | clsss3 23067 |
. . . . . 6
⊢ ((𝐽 ∈ Top ∧ {𝐴} ⊆ ∪ 𝐽)
→ ((cls‘𝐽)‘{𝐴}) ⊆ ∪
𝐽) |
| 6 | 1, 4, 5 | syl2anc 584 |
. . . . 5
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ ∪
𝐽) |
| 7 | 6 | sselda 3983 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ ∪ 𝐽) |
| 8 | | simpll 767 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝐴 ∈ (𝐽 fLim 𝐹)) |
| 9 | 8, 1 | syl 17 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝐽 ∈ Top) |
| 10 | | simprl 771 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝑦 ∈ 𝐽) |
| 11 | 1 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ Top) |
| 12 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → {𝐴} ⊆ ∪ 𝐽) |
| 13 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) |
| 14 | 11, 12, 13 | 3jca 1129 |
. . . . . . . . 9
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝐽 ∈ Top ∧ {𝐴} ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴}))) |
| 15 | 2 | clsndisj 23083 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ Top ∧ {𝐴} ⊆ ∪ 𝐽
∧ 𝑥 ∈
((cls‘𝐽)‘{𝐴})) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → (𝑦 ∩ {𝐴}) ≠ ∅) |
| 16 | | disjsn 4711 |
. . . . . . . . . . 11
⊢ ((𝑦 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝑦) |
| 17 | 16 | necon2abii 2991 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑦 ↔ (𝑦 ∩ {𝐴}) ≠ ∅) |
| 18 | 15, 17 | sylibr 234 |
. . . . . . . . 9
⊢ (((𝐽 ∈ Top ∧ {𝐴} ⊆ ∪ 𝐽
∧ 𝑥 ∈
((cls‘𝐽)‘{𝐴})) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝐴 ∈ 𝑦) |
| 19 | 14, 18 | sylan 580 |
. . . . . . . 8
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝐴 ∈ 𝑦) |
| 20 | | opnneip 23127 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽 ∧ 𝐴 ∈ 𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) |
| 21 | 9, 10, 19, 20 | syl3anc 1373 |
. . . . . . 7
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) |
| 22 | | flimnei 23975 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦 ∈ 𝐹) |
| 23 | 8, 21, 22 | syl2anc 584 |
. . . . . 6
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦 ∈ 𝐽 ∧ 𝑥 ∈ 𝑦)) → 𝑦 ∈ 𝐹) |
| 24 | 23 | expr 456 |
. . . . 5
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ 𝑦 ∈ 𝐽) → (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹)) |
| 25 | 24 | ralrimiva 3146 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → ∀𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹)) |
| 26 | | toptopon2 22924 |
. . . . . 6
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 27 | 11, 26 | sylib 218 |
. . . . 5
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 28 | 2 | flimfil 23977 |
. . . . . 6
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 29 | 28 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 30 | | flimopn 23983 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐹 ∈
(Fil‘∪ 𝐽)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ ∪ 𝐽 ∧ ∀𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹)))) |
| 31 | 27, 29, 30 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 ∈ ∪ 𝐽 ∧ ∀𝑦 ∈ 𝐽 (𝑥 ∈ 𝑦 → 𝑦 ∈ 𝐹)))) |
| 32 | 7, 25, 31 | mpbir2and 713 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ (𝐽 fLim 𝐹)) |
| 33 | 32 | ex 412 |
. 2
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ ((cls‘𝐽)‘{𝐴}) → 𝑥 ∈ (𝐽 fLim 𝐹))) |
| 34 | 33 | ssrdv 3989 |
1
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹)) |