MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimsncls Structured version   Visualization version   GIF version

Theorem flimsncls 22589
Description: If 𝐴 is a limit point of the filter 𝐹, then all the points which specialize 𝐴 (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015.)
Assertion
Ref Expression
flimsncls (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹))

Proof of Theorem flimsncls
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 22568 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 eqid 2822 . . . . . . . 8 𝐽 = 𝐽
32flimelbas 22571 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 𝐽)
43snssd 4715 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → {𝐴} ⊆ 𝐽)
52clsss3 21662 . . . . . 6 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽) → ((cls‘𝐽)‘{𝐴}) ⊆ 𝐽)
61, 4, 5syl2anc 587 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ 𝐽)
76sselda 3942 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 𝐽)
8 simpll 766 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴 ∈ (𝐽 fLim 𝐹))
98, 1syl 17 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐽 ∈ Top)
10 simprl 770 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐽)
111adantr 484 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
124adantr 484 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
13 simpr 488 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ ((cls‘𝐽)‘{𝐴}))
1411, 12, 133jca 1125 . . . . . . . . 9 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})))
152clsndisj 21678 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∩ {𝐴}) ≠ ∅)
16 disjsn 4621 . . . . . . . . . . 11 ((𝑦 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝑦)
1716necon2abii 3061 . . . . . . . . . 10 (𝐴𝑦 ↔ (𝑦 ∩ {𝐴}) ≠ ∅)
1815, 17sylibr 237 . . . . . . . . 9 (((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴𝑦)
1914, 18sylan 583 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴𝑦)
20 opnneip 21722 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑦𝐽𝐴𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
219, 10, 19, 20syl3anc 1368 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
22 flimnei 22570 . . . . . . 7 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦𝐹)
238, 21, 22syl2anc 587 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
2423expr 460 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
2524ralrimiva 3174 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
26 toptopon2 21521 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2711, 26sylib 221 . . . . 5 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘ 𝐽))
282flimfil 22572 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
2928adantr 484 . . . . 5 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘ 𝐽))
30 flimopn 22578 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 𝐽 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
3127, 29, 30syl2anc 587 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 𝐽 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
327, 25, 31mpbir2and 712 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ (𝐽 fLim 𝐹))
3332ex 416 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ ((cls‘𝐽)‘{𝐴}) → 𝑥 ∈ (𝐽 fLim 𝐹)))
3433ssrdv 3948 1 (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2114  wne 3011  wral 3130  cin 3907  wss 3908  c0 4265  {csn 4539   cuni 4813  cfv 6334  (class class class)co 7140  Topctop 21496  TopOnctopon 21513  clsccl 21621  neicnei 21700  Filcfil 22448   fLim cflim 22537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-iin 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ov 7143  df-oprab 7144  df-mpo 7145  df-fbas 20086  df-top 21497  df-topon 21514  df-cld 21622  df-ntr 21623  df-cls 21624  df-nei 21701  df-fil 22449  df-flim 22542
This theorem is referenced by:  tsmscls  22741
  Copyright terms: Public domain W3C validator