MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimsncls Structured version   Visualization version   GIF version

Theorem flimsncls 23873
Description: If 𝐴 is a limit point of the filter 𝐹, then all the points which specialize 𝐴 (in the specialization preorder) are also limit points. Thus, the set of limit points is a union of closed sets (although this is only nontrivial for non-T1 spaces). (Contributed by Mario Carneiro, 20-Sep-2015.)
Assertion
Ref Expression
flimsncls (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹))

Proof of Theorem flimsncls
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 flimtop 23852 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
2 eqid 2729 . . . . . . . 8 𝐽 = 𝐽
32flimelbas 23855 . . . . . . 7 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 𝐽)
43snssd 4773 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → {𝐴} ⊆ 𝐽)
52clsss3 22946 . . . . . 6 ((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽) → ((cls‘𝐽)‘{𝐴}) ⊆ 𝐽)
61, 4, 5syl2anc 584 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ 𝐽)
76sselda 3946 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 𝐽)
8 simpll 766 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴 ∈ (𝐽 fLim 𝐹))
98, 1syl 17 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐽 ∈ Top)
10 simprl 770 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐽)
111adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ Top)
124adantr 480 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → {𝐴} ⊆ 𝐽)
13 simpr 484 . . . . . . . . . 10 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ ((cls‘𝐽)‘{𝐴}))
1411, 12, 133jca 1128 . . . . . . . . 9 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})))
152clsndisj 22962 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → (𝑦 ∩ {𝐴}) ≠ ∅)
16 disjsn 4675 . . . . . . . . . . 11 ((𝑦 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝑦)
1716necon2abii 2975 . . . . . . . . . 10 (𝐴𝑦 ↔ (𝑦 ∩ {𝐴}) ≠ ∅)
1815, 17sylibr 234 . . . . . . . . 9 (((𝐽 ∈ Top ∧ {𝐴} ⊆ 𝐽𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴𝑦)
1914, 18sylan 580 . . . . . . . 8 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝐴𝑦)
20 opnneip 23006 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑦𝐽𝐴𝑦) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
219, 10, 19, 20syl3anc 1373 . . . . . . 7 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦 ∈ ((nei‘𝐽)‘{𝐴}))
22 flimnei 23854 . . . . . . 7 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑦𝐹)
238, 21, 22syl2anc 584 . . . . . 6 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ (𝑦𝐽𝑥𝑦)) → 𝑦𝐹)
2423expr 456 . . . . 5 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) ∧ 𝑦𝐽) → (𝑥𝑦𝑦𝐹))
2524ralrimiva 3125 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))
26 toptopon2 22805 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2711, 26sylib 218 . . . . 5 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐽 ∈ (TopOn‘ 𝐽))
282flimfil 23856 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
2928adantr 480 . . . . 5 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝐹 ∈ (Fil‘ 𝐽))
30 flimopn 23862 . . . . 5 ((𝐽 ∈ (TopOn‘ 𝐽) ∧ 𝐹 ∈ (Fil‘ 𝐽)) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 𝐽 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
3127, 29, 30syl2anc 584 . . . 4 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → (𝑥 ∈ (𝐽 fLim 𝐹) ↔ (𝑥 𝐽 ∧ ∀𝑦𝐽 (𝑥𝑦𝑦𝐹))))
327, 25, 31mpbir2and 713 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑥 ∈ ((cls‘𝐽)‘{𝐴})) → 𝑥 ∈ (𝐽 fLim 𝐹))
3332ex 412 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝑥 ∈ ((cls‘𝐽)‘{𝐴}) → 𝑥 ∈ (𝐽 fLim 𝐹)))
3433ssrdv 3952 1 (𝐴 ∈ (𝐽 fLim 𝐹) → ((cls‘𝐽)‘{𝐴}) ⊆ (𝐽 fLim 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  cin 3913  wss 3914  c0 4296  {csn 4589   cuni 4871  cfv 6511  (class class class)co 7387  Topctop 22780  TopOnctopon 22797  clsccl 22905  neicnei 22984  Filcfil 23732   fLim cflim 23821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-fbas 21261  df-top 22781  df-topon 22798  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-fil 23733  df-flim 23826
This theorem is referenced by:  tsmscls  24025
  Copyright terms: Public domain W3C validator