Step | Hyp | Ref
| Expression |
1 | | eqid 2731 |
. . . . . . . 8
β’ βͺ π½ =
βͺ π½ |
2 | 1 | flimfil 23694 |
. . . . . . 7
β’ (π₯ β (π½ fLim πΉ) β πΉ β (Filββͺ π½)) |
3 | 2 | ad2antlr 724 |
. . . . . 6
β’ (((π β πΉ β§ π₯ β (π½ fLim πΉ)) β§ π¦ β ((neiβπ½)β{π₯})) β πΉ β (Filββͺ π½)) |
4 | | flimnei 23692 |
. . . . . . 7
β’ ((π₯ β (π½ fLim πΉ) β§ π¦ β ((neiβπ½)β{π₯})) β π¦ β πΉ) |
5 | 4 | adantll 711 |
. . . . . 6
β’ (((π β πΉ β§ π₯ β (π½ fLim πΉ)) β§ π¦ β ((neiβπ½)β{π₯})) β π¦ β πΉ) |
6 | | simpll 764 |
. . . . . 6
β’ (((π β πΉ β§ π₯ β (π½ fLim πΉ)) β§ π¦ β ((neiβπ½)β{π₯})) β π β πΉ) |
7 | | filinn0 23585 |
. . . . . 6
β’ ((πΉ β (Filββͺ π½)
β§ π¦ β πΉ β§ π β πΉ) β (π¦ β© π) β β
) |
8 | 3, 5, 6, 7 | syl3anc 1370 |
. . . . 5
β’ (((π β πΉ β§ π₯ β (π½ fLim πΉ)) β§ π¦ β ((neiβπ½)β{π₯})) β (π¦ β© π) β β
) |
9 | 8 | ralrimiva 3145 |
. . . 4
β’ ((π β πΉ β§ π₯ β (π½ fLim πΉ)) β βπ¦ β ((neiβπ½)β{π₯})(π¦ β© π) β β
) |
10 | | flimtop 23690 |
. . . . . 6
β’ (π₯ β (π½ fLim πΉ) β π½ β Top) |
11 | 10 | adantl 481 |
. . . . 5
β’ ((π β πΉ β§ π₯ β (π½ fLim πΉ)) β π½ β Top) |
12 | | filelss 23577 |
. . . . . . 7
β’ ((πΉ β (Filββͺ π½)
β§ π β πΉ) β π β βͺ π½) |
13 | 12 | ancoms 458 |
. . . . . 6
β’ ((π β πΉ β§ πΉ β (Filββͺ π½))
β π β βͺ π½) |
14 | 2, 13 | sylan2 592 |
. . . . 5
β’ ((π β πΉ β§ π₯ β (π½ fLim πΉ)) β π β βͺ π½) |
15 | 1 | flimelbas 23693 |
. . . . . 6
β’ (π₯ β (π½ fLim πΉ) β π₯ β βͺ π½) |
16 | 15 | adantl 481 |
. . . . 5
β’ ((π β πΉ β§ π₯ β (π½ fLim πΉ)) β π₯ β βͺ π½) |
17 | 1 | neindisj2 22848 |
. . . . 5
β’ ((π½ β Top β§ π β βͺ π½
β§ π₯ β βͺ π½)
β (π₯ β
((clsβπ½)βπ) β βπ¦ β ((neiβπ½)β{π₯})(π¦ β© π) β β
)) |
18 | 11, 14, 16, 17 | syl3anc 1370 |
. . . 4
β’ ((π β πΉ β§ π₯ β (π½ fLim πΉ)) β (π₯ β ((clsβπ½)βπ) β βπ¦ β ((neiβπ½)β{π₯})(π¦ β© π) β β
)) |
19 | 9, 18 | mpbird 257 |
. . 3
β’ ((π β πΉ β§ π₯ β (π½ fLim πΉ)) β π₯ β ((clsβπ½)βπ)) |
20 | 19 | ex 412 |
. 2
β’ (π β πΉ β (π₯ β (π½ fLim πΉ) β π₯ β ((clsβπ½)βπ))) |
21 | 20 | ssrdv 3988 |
1
β’ (π β πΉ β (π½ fLim πΉ) β ((clsβπ½)βπ)) |