| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimclsi | Structured version Visualization version GIF version | ||
| Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
| Ref | Expression |
|---|---|
| flimclsi | ⊢ (𝑆 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | flimfil 23885 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 3 | 2 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 4 | flimnei 23883 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦 ∈ 𝐹) | |
| 5 | 4 | adantll 714 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦 ∈ 𝐹) |
| 6 | simpll 766 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆 ∈ 𝐹) | |
| 7 | filinn0 23776 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘∪ 𝐽) ∧ 𝑦 ∈ 𝐹 ∧ 𝑆 ∈ 𝐹) → (𝑦 ∩ 𝑆) ≠ ∅) | |
| 8 | 3, 5, 6, 7 | syl3anc 1373 | . . . . 5 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → (𝑦 ∩ 𝑆) ≠ ∅) |
| 9 | 8 | ralrimiva 3125 | . . . 4 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅) |
| 10 | flimtop 23881 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
| 11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝐽 ∈ Top) |
| 12 | filelss 23768 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘∪ 𝐽) ∧ 𝑆 ∈ 𝐹) → 𝑆 ⊆ ∪ 𝐽) | |
| 13 | 12 | ancoms 458 | . . . . . 6 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → 𝑆 ⊆ ∪ 𝐽) |
| 14 | 2, 13 | sylan2 593 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑆 ⊆ ∪ 𝐽) |
| 15 | 1 | flimelbas 23884 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ∪ 𝐽) |
| 16 | 15 | adantl 481 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ∪ 𝐽) |
| 17 | 1 | neindisj2 23039 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅)) |
| 18 | 11, 14, 16, 17 | syl3anc 1373 | . . . 4 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅)) |
| 19 | 9, 18 | mpbird 257 | . . 3 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)) |
| 20 | 19 | ex 412 | . 2 ⊢ (𝑆 ∈ 𝐹 → (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
| 21 | 20 | ssrdv 3936 | 1 ⊢ (𝑆 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 {csn 4575 ∪ cuni 4858 ‘cfv 6486 (class class class)co 7352 Topctop 22809 clsccl 22934 neicnei 23013 Filcfil 23761 fLim cflim 23850 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-fbas 21290 df-top 22810 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-fil 23762 df-flim 23855 |
| This theorem is referenced by: flimcls 23901 flimfcls 23942 cnextcn 23983 cmetss 25244 minveclem4 25360 |
| Copyright terms: Public domain | W3C validator |