![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimclsi | Structured version Visualization version GIF version |
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
flimclsi | ⊢ (𝑆 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | flimfil 23998 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
3 | 2 | ad2antlr 726 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
4 | flimnei 23996 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦 ∈ 𝐹) | |
5 | 4 | adantll 713 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦 ∈ 𝐹) |
6 | simpll 766 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆 ∈ 𝐹) | |
7 | filinn0 23889 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘∪ 𝐽) ∧ 𝑦 ∈ 𝐹 ∧ 𝑆 ∈ 𝐹) → (𝑦 ∩ 𝑆) ≠ ∅) | |
8 | 3, 5, 6, 7 | syl3anc 1371 | . . . . 5 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → (𝑦 ∩ 𝑆) ≠ ∅) |
9 | 8 | ralrimiva 3152 | . . . 4 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅) |
10 | flimtop 23994 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝐽 ∈ Top) |
12 | filelss 23881 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘∪ 𝐽) ∧ 𝑆 ∈ 𝐹) → 𝑆 ⊆ ∪ 𝐽) | |
13 | 12 | ancoms 458 | . . . . . 6 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → 𝑆 ⊆ ∪ 𝐽) |
14 | 2, 13 | sylan2 592 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑆 ⊆ ∪ 𝐽) |
15 | 1 | flimelbas 23997 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ∪ 𝐽) |
16 | 15 | adantl 481 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ∪ 𝐽) |
17 | 1 | neindisj2 23152 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅)) |
18 | 11, 14, 16, 17 | syl3anc 1371 | . . . 4 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅)) |
19 | 9, 18 | mpbird 257 | . . 3 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)) |
20 | 19 | ex 412 | . 2 ⊢ (𝑆 ∈ 𝐹 → (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
21 | 20 | ssrdv 4014 | 1 ⊢ (𝑆 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 {csn 4648 ∪ cuni 4931 ‘cfv 6573 (class class class)co 7448 Topctop 22920 clsccl 23047 neicnei 23126 Filcfil 23874 fLim cflim 23963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-fbas 21384 df-top 22921 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-fil 23875 df-flim 23968 |
This theorem is referenced by: flimcls 24014 flimfcls 24055 cnextcn 24096 cmetss 25369 minveclem4 25485 |
Copyright terms: Public domain | W3C validator |