![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimclsi | Structured version Visualization version GIF version |
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
flimclsi | ⊢ (𝑆 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | flimfil 22101 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
3 | 2 | ad2antlr 719 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
4 | flimnei 22099 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦 ∈ 𝐹) | |
5 | 4 | adantll 706 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦 ∈ 𝐹) |
6 | simpll 784 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆 ∈ 𝐹) | |
7 | filinn0 21992 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘∪ 𝐽) ∧ 𝑦 ∈ 𝐹 ∧ 𝑆 ∈ 𝐹) → (𝑦 ∩ 𝑆) ≠ ∅) | |
8 | 3, 5, 6, 7 | syl3anc 1491 | . . . . 5 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → (𝑦 ∩ 𝑆) ≠ ∅) |
9 | 8 | ralrimiva 3147 | . . . 4 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅) |
10 | flimtop 22097 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
11 | 10 | adantl 474 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝐽 ∈ Top) |
12 | filelss 21984 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘∪ 𝐽) ∧ 𝑆 ∈ 𝐹) → 𝑆 ⊆ ∪ 𝐽) | |
13 | 12 | ancoms 451 | . . . . . 6 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → 𝑆 ⊆ ∪ 𝐽) |
14 | 2, 13 | sylan2 587 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑆 ⊆ ∪ 𝐽) |
15 | 1 | flimelbas 22100 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ∪ 𝐽) |
16 | 15 | adantl 474 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ∪ 𝐽) |
17 | 1 | neindisj2 21256 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅)) |
18 | 11, 14, 16, 17 | syl3anc 1491 | . . . 4 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅)) |
19 | 9, 18 | mpbird 249 | . . 3 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)) |
20 | 19 | ex 402 | . 2 ⊢ (𝑆 ∈ 𝐹 → (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
21 | 20 | ssrdv 3804 | 1 ⊢ (𝑆 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 {csn 4368 ∪ cuni 4628 ‘cfv 6101 (class class class)co 6878 Topctop 21026 clsccl 21151 neicnei 21230 Filcfil 21977 fLim cflim 22066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-fbas 20065 df-top 21027 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-fil 21978 df-flim 22071 |
This theorem is referenced by: flimcls 22117 flimfcls 22158 cnextcn 22199 cmetss 23442 minveclem4 23542 |
Copyright terms: Public domain | W3C validator |