MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclsi Structured version   Visualization version   GIF version

Theorem flimclsi 23881
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimclsi (𝑆𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem flimclsi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . 8 𝐽 = 𝐽
21flimfil 23872 . . . . . . 7 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
32ad2antlr 727 . . . . . 6 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝐹 ∈ (Fil‘ 𝐽))
4 flimnei 23870 . . . . . . 7 ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦𝐹)
54adantll 714 . . . . . 6 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦𝐹)
6 simpll 766 . . . . . 6 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆𝐹)
7 filinn0 23763 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐽) ∧ 𝑦𝐹𝑆𝐹) → (𝑦𝑆) ≠ ∅)
83, 5, 6, 7syl3anc 1373 . . . . 5 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → (𝑦𝑆) ≠ ∅)
98ralrimiva 3121 . . . 4 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦𝑆) ≠ ∅)
10 flimtop 23868 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
1110adantl 481 . . . . 5 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝐽 ∈ Top)
12 filelss 23755 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐽) ∧ 𝑆𝐹) → 𝑆 𝐽)
1312ancoms 458 . . . . . 6 ((𝑆𝐹𝐹 ∈ (Fil‘ 𝐽)) → 𝑆 𝐽)
142, 13sylan2 593 . . . . 5 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑆 𝐽)
151flimelbas 23871 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 𝐽)
1615adantl 481 . . . . 5 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 𝐽)
171neindisj2 23026 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑥 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦𝑆) ≠ ∅))
1811, 14, 16, 17syl3anc 1373 . . . 4 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦𝑆) ≠ ∅))
199, 18mpbird 257 . . 3 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))
2019ex 412 . 2 (𝑆𝐹 → (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
2120ssrdv 3943 1 (𝑆𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2925  wral 3044  cin 3904  wss 3905  c0 4286  {csn 4579   cuni 4861  cfv 6486  (class class class)co 7353  Topctop 22796  clsccl 22921  neicnei 23000  Filcfil 23748   fLim cflim 23837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-fbas 21276  df-top 22797  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-fil 23749  df-flim 23842
This theorem is referenced by:  flimcls  23888  flimfcls  23929  cnextcn  23970  cmetss  25232  minveclem4  25348
  Copyright terms: Public domain W3C validator