Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flimclsi | Structured version Visualization version GIF version |
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.) |
Ref | Expression |
---|---|
flimclsi | ⊢ (𝑆 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . . 8 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | flimfil 23028 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
3 | 2 | ad2antlr 723 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
4 | flimnei 23026 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦 ∈ 𝐹) | |
5 | 4 | adantll 710 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦 ∈ 𝐹) |
6 | simpll 763 | . . . . . 6 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆 ∈ 𝐹) | |
7 | filinn0 22919 | . . . . . 6 ⊢ ((𝐹 ∈ (Fil‘∪ 𝐽) ∧ 𝑦 ∈ 𝐹 ∧ 𝑆 ∈ 𝐹) → (𝑦 ∩ 𝑆) ≠ ∅) | |
8 | 3, 5, 6, 7 | syl3anc 1369 | . . . . 5 ⊢ (((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → (𝑦 ∩ 𝑆) ≠ ∅) |
9 | 8 | ralrimiva 3107 | . . . 4 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅) |
10 | flimtop 23024 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | |
11 | 10 | adantl 481 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝐽 ∈ Top) |
12 | filelss 22911 | . . . . . . 7 ⊢ ((𝐹 ∈ (Fil‘∪ 𝐽) ∧ 𝑆 ∈ 𝐹) → 𝑆 ⊆ ∪ 𝐽) | |
13 | 12 | ancoms 458 | . . . . . 6 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝐹 ∈ (Fil‘∪ 𝐽)) → 𝑆 ⊆ ∪ 𝐽) |
14 | 2, 13 | sylan2 592 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑆 ⊆ ∪ 𝐽) |
15 | 1 | flimelbas 23027 | . . . . . 6 ⊢ (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ∪ 𝐽) |
16 | 15 | adantl 481 | . . . . 5 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ∪ 𝐽) |
17 | 1 | neindisj2 22182 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅)) |
18 | 11, 14, 16, 17 | syl3anc 1369 | . . . 4 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦 ∩ 𝑆) ≠ ∅)) |
19 | 9, 18 | mpbird 256 | . . 3 ⊢ ((𝑆 ∈ 𝐹 ∧ 𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)) |
20 | 19 | ex 412 | . 2 ⊢ (𝑆 ∈ 𝐹 → (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))) |
21 | 20 | ssrdv 3923 | 1 ⊢ (𝑆 ∈ 𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 ∪ cuni 4836 ‘cfv 6418 (class class class)co 7255 Topctop 21950 clsccl 22077 neicnei 22156 Filcfil 22904 fLim cflim 22993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-fbas 20507 df-top 21951 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-fil 22905 df-flim 22998 |
This theorem is referenced by: flimcls 23044 flimfcls 23085 cnextcn 23126 cmetss 24385 minveclem4 24501 |
Copyright terms: Public domain | W3C validator |