MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimclsi Structured version   Visualization version   GIF version

Theorem flimclsi 23872
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
flimclsi (𝑆𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆))

Proof of Theorem flimclsi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . . . . 8 𝐽 = 𝐽
21flimfil 23863 . . . . . . 7 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
32ad2antlr 727 . . . . . 6 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝐹 ∈ (Fil‘ 𝐽))
4 flimnei 23861 . . . . . . 7 ((𝑥 ∈ (𝐽 fLim 𝐹) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦𝐹)
54adantll 714 . . . . . 6 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑦𝐹)
6 simpll 766 . . . . . 6 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → 𝑆𝐹)
7 filinn0 23754 . . . . . 6 ((𝐹 ∈ (Fil‘ 𝐽) ∧ 𝑦𝐹𝑆𝐹) → (𝑦𝑆) ≠ ∅)
83, 5, 6, 7syl3anc 1373 . . . . 5 (((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) ∧ 𝑦 ∈ ((nei‘𝐽)‘{𝑥})) → (𝑦𝑆) ≠ ∅)
98ralrimiva 3126 . . . 4 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦𝑆) ≠ ∅)
10 flimtop 23859 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
1110adantl 481 . . . . 5 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝐽 ∈ Top)
12 filelss 23746 . . . . . . 7 ((𝐹 ∈ (Fil‘ 𝐽) ∧ 𝑆𝐹) → 𝑆 𝐽)
1312ancoms 458 . . . . . 6 ((𝑆𝐹𝐹 ∈ (Fil‘ 𝐽)) → 𝑆 𝐽)
142, 13sylan2 593 . . . . 5 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑆 𝐽)
151flimelbas 23862 . . . . . 6 (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 𝐽)
1615adantl 481 . . . . 5 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 𝐽)
171neindisj2 23017 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆 𝐽𝑥 𝐽) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦𝑆) ≠ ∅))
1811, 14, 16, 17syl3anc 1373 . . . 4 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → (𝑥 ∈ ((cls‘𝐽)‘𝑆) ↔ ∀𝑦 ∈ ((nei‘𝐽)‘{𝑥})(𝑦𝑆) ≠ ∅))
199, 18mpbird 257 . . 3 ((𝑆𝐹𝑥 ∈ (𝐽 fLim 𝐹)) → 𝑥 ∈ ((cls‘𝐽)‘𝑆))
2019ex 412 . 2 (𝑆𝐹 → (𝑥 ∈ (𝐽 fLim 𝐹) → 𝑥 ∈ ((cls‘𝐽)‘𝑆)))
2120ssrdv 3955 1 (𝑆𝐹 → (𝐽 fLim 𝐹) ⊆ ((cls‘𝐽)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wne 2926  wral 3045  cin 3916  wss 3917  c0 4299  {csn 4592   cuni 4874  cfv 6514  (class class class)co 7390  Topctop 22787  clsccl 22912  neicnei 22991  Filcfil 23739   fLim cflim 23828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-fbas 21268  df-top 22788  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-fil 23740  df-flim 23833
This theorem is referenced by:  flimcls  23879  flimfcls  23920  cnextcn  23961  cmetss  25223  minveclem4  25339
  Copyright terms: Public domain W3C validator