| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimelbas | Structured version Visualization version GIF version | ||
| Description: A limit point of a filter belongs to its base set. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| flimuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| flimelbas | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | elflim2 23868 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 3 | 2 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 𝒫 cpw 4553 {csn 4579 ∪ cuni 4861 ran crn 5624 ‘cfv 6486 (class class class)co 7353 Topctop 22797 neicnei 23001 Filcfil 23749 fLim cflim 23838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-top 22798 df-flim 23843 |
| This theorem is referenced by: flimfil 23873 flimss2 23876 flimss1 23877 flimclsi 23882 hausflimi 23884 flimsncls 23890 cnpflfi 23903 cnflf 23906 cnflf2 23907 flimcfil 25231 |
| Copyright terms: Public domain | W3C validator |