![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > flimelbas | Structured version Visualization version GIF version |
Description: A limit point of a filter belongs to its base set. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.) |
Ref | Expression |
---|---|
flimuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
flimelbas | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flimuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | elflim2 23962 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
3 | 2 | simprbi 495 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) |
4 | 3 | simpld 493 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 𝒫 cpw 4607 {csn 4633 ∪ cuni 4915 ran crn 5685 ‘cfv 6556 (class class class)co 7426 Topctop 22889 neicnei 23095 Filcfil 23843 fLim cflim 23932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pr 5435 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-br 5156 df-opab 5218 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6508 df-fun 6558 df-fv 6564 df-ov 7429 df-oprab 7430 df-mpo 7431 df-top 22890 df-flim 23937 |
This theorem is referenced by: flimfil 23967 flimss2 23970 flimss1 23971 flimclsi 23976 hausflimi 23978 flimsncls 23984 cnpflfi 23997 cnflf 24000 cnflf2 24001 flimcfil 25336 |
Copyright terms: Public domain | W3C validator |