MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimelbas Structured version   Visualization version   GIF version

Theorem flimelbas 23997
Description: A limit point of a filter belongs to its base set. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
flimuni.1 𝑋 = 𝐽
Assertion
Ref Expression
flimelbas (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴𝑋)

Proof of Theorem flimelbas
StepHypRef Expression
1 flimuni.1 . . . 4 𝑋 = 𝐽
21elflim2 23993 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
32simprbi 496 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))
43simpld 494 1 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wss 3976  𝒫 cpw 4622  {csn 4648   cuni 4931  ran crn 5701  cfv 6573  (class class class)co 7448  Topctop 22920  neicnei 23126  Filcfil 23874   fLim cflim 23963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-top 22921  df-flim 23968
This theorem is referenced by:  flimfil  23998  flimss2  24001  flimss1  24002  flimclsi  24007  hausflimi  24009  flimsncls  24015  cnpflfi  24028  cnflf  24031  cnflf2  24032  flimcfil  25367
  Copyright terms: Public domain W3C validator