MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimelbas Structured version   Visualization version   GIF version

Theorem flimelbas 23693
Description: A limit point of a filter belongs to its base set. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
flimuni.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
flimelbas (𝐴 ∈ (𝐽 fLim 𝐹) β†’ 𝐴 ∈ 𝑋)

Proof of Theorem flimelbas
StepHypRef Expression
1 flimuni.1 . . . 4 𝑋 = βˆͺ 𝐽
21elflim2 23689 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ βˆͺ ran Fil ∧ 𝐹 βŠ† 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹)))
32simprbi 496 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ (𝐴 ∈ 𝑋 ∧ ((neiβ€˜π½)β€˜{𝐴}) βŠ† 𝐹))
43simpld 494 1 (𝐴 ∈ (𝐽 fLim 𝐹) β†’ 𝐴 ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1086   = wceq 1540   ∈ wcel 2105   βŠ† wss 3948  π’« cpw 4602  {csn 4628  βˆͺ cuni 4908  ran crn 5677  β€˜cfv 6543  (class class class)co 7412  Topctop 22616  neicnei 22822  Filcfil 23570   fLim cflim 23659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-top 22617  df-flim 23664
This theorem is referenced by:  flimfil  23694  flimss2  23697  flimss1  23698  flimclsi  23703  hausflimi  23705  flimsncls  23711  cnpflfi  23724  cnflf  23727  cnflf2  23728  flimcfil  25063
  Copyright terms: Public domain W3C validator