MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimelbas Structured version   Visualization version   GIF version

Theorem flimelbas 23130
Description: A limit point of a filter belongs to its base set. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
flimuni.1 𝑋 = 𝐽
Assertion
Ref Expression
flimelbas (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴𝑋)

Proof of Theorem flimelbas
StepHypRef Expression
1 flimuni.1 . . . 4 𝑋 = 𝐽
21elflim2 23126 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)))
32simprbi 497 . 2 (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐴𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))
43simpld 495 1 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wss 3892  𝒫 cpw 4539  {csn 4567   cuni 4845  ran crn 5591  cfv 6432  (class class class)co 7272  Topctop 22053  neicnei 22259  Filcfil 23007   fLim cflim 23096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-id 5490  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-iota 6390  df-fun 6434  df-fv 6440  df-ov 7275  df-oprab 7276  df-mpo 7277  df-top 22054  df-flim 23101
This theorem is referenced by:  flimfil  23131  flimss2  23134  flimss1  23135  flimclsi  23140  hausflimi  23142  flimsncls  23148  cnpflfi  23161  cnflf  23164  cnflf2  23165  flimcfil  24489
  Copyright terms: Public domain W3C validator