| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimelbas | Structured version Visualization version GIF version | ||
| Description: A limit point of a filter belongs to its base set. (Contributed by Jeff Hankins, 4-Sep-2009.) (Revised by Mario Carneiro, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| flimuni.1 | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| flimelbas | ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flimuni.1 | . . . 4 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | elflim2 23874 | . . 3 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) ↔ ((𝐽 ∈ Top ∧ 𝐹 ∈ ∪ ran Fil ∧ 𝐹 ⊆ 𝒫 𝑋) ∧ (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹))) |
| 3 | 2 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → (𝐴 ∈ 𝑋 ∧ ((nei‘𝐽)‘{𝐴}) ⊆ 𝐹)) |
| 4 | 3 | simpld 494 | 1 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 𝒫 cpw 4545 {csn 4571 ∪ cuni 4854 ran crn 5612 ‘cfv 6476 (class class class)co 7341 Topctop 22803 neicnei 23007 Filcfil 23755 fLim cflim 23844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-top 22804 df-flim 23849 |
| This theorem is referenced by: flimfil 23879 flimss2 23882 flimss1 23883 flimclsi 23888 hausflimi 23890 flimsncls 23896 cnpflfi 23909 cnflf 23912 cnflf2 23913 flimcfil 25236 |
| Copyright terms: Public domain | W3C validator |