Proof of Theorem hausflimlem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simp1l 1198 | . . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐴 ∈ (𝐽 fLim 𝐹)) | 
| 2 |  | eqid 2737 | . . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 3 | 2 | flimfil 23977 | . . 3
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) | 
| 4 | 1, 3 | syl 17 | . 2
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐹 ∈ (Fil‘∪ 𝐽)) | 
| 5 |  | flimtop 23973 | . . . . 5
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) | 
| 6 | 1, 5 | syl 17 | . . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐽 ∈ Top) | 
| 7 |  | simp2l 1200 | . . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑈 ∈ 𝐽) | 
| 8 |  | simp3l 1202 | . . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐴 ∈ 𝑈) | 
| 9 |  | opnneip 23127 | . . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴})) | 
| 10 | 6, 7, 8, 9 | syl3anc 1373 | . . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴})) | 
| 11 |  | flimnei 23975 | . . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑈 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑈 ∈ 𝐹) | 
| 12 | 1, 10, 11 | syl2anc 584 | . 2
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑈 ∈ 𝐹) | 
| 13 |  | simp1r 1199 | . . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐵 ∈ (𝐽 fLim 𝐹)) | 
| 14 |  | simp2r 1201 | . . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑉 ∈ 𝐽) | 
| 15 |  | simp3r 1203 | . . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | 
| 16 |  | opnneip 23127 | . . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑉 ∈ 𝐽 ∧ 𝐵 ∈ 𝑉) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵})) | 
| 17 | 6, 14, 15, 16 | syl3anc 1373 | . . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵})) | 
| 18 |  | flimnei 23975 | . . 3
⊢ ((𝐵 ∈ (𝐽 fLim 𝐹) ∧ 𝑉 ∈ ((nei‘𝐽)‘{𝐵})) → 𝑉 ∈ 𝐹) | 
| 19 | 13, 17, 18 | syl2anc 584 | . 2
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑉 ∈ 𝐹) | 
| 20 |  | filinn0 23868 | . 2
⊢ ((𝐹 ∈ (Fil‘∪ 𝐽)
∧ 𝑈 ∈ 𝐹 ∧ 𝑉 ∈ 𝐹) → (𝑈 ∩ 𝑉) ≠ ∅) | 
| 21 | 4, 12, 19, 20 | syl3anc 1373 | 1
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑈 ∩ 𝑉) ≠ ∅) |