Proof of Theorem hausflimlem
Step | Hyp | Ref
| Expression |
1 | | simp1l 1196 |
. . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐴 ∈ (𝐽 fLim 𝐹)) |
2 | | eqid 2738 |
. . . 4
⊢ ∪ 𝐽 =
∪ 𝐽 |
3 | 2 | flimfil 23120 |
. . 3
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
4 | 1, 3 | syl 17 |
. 2
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
5 | | flimtop 23116 |
. . . . 5
⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top) |
6 | 1, 5 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐽 ∈ Top) |
7 | | simp2l 1198 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑈 ∈ 𝐽) |
8 | | simp3l 1200 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐴 ∈ 𝑈) |
9 | | opnneip 22270 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴})) |
10 | 6, 7, 8, 9 | syl3anc 1370 |
. . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴})) |
11 | | flimnei 23118 |
. . 3
⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑈 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑈 ∈ 𝐹) |
12 | 1, 10, 11 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑈 ∈ 𝐹) |
13 | | simp1r 1197 |
. . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐵 ∈ (𝐽 fLim 𝐹)) |
14 | | simp2r 1199 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑉 ∈ 𝐽) |
15 | | simp3r 1201 |
. . . 4
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝐵 ∈ 𝑉) |
16 | | opnneip 22270 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝑉 ∈ 𝐽 ∧ 𝐵 ∈ 𝑉) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵})) |
17 | 6, 14, 15, 16 | syl3anc 1370 |
. . 3
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵})) |
18 | | flimnei 23118 |
. . 3
⊢ ((𝐵 ∈ (𝐽 fLim 𝐹) ∧ 𝑉 ∈ ((nei‘𝐽)‘{𝐵})) → 𝑉 ∈ 𝐹) |
19 | 13, 17, 18 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → 𝑉 ∈ 𝐹) |
20 | | filinn0 23011 |
. 2
⊢ ((𝐹 ∈ (Fil‘∪ 𝐽)
∧ 𝑈 ∈ 𝐹 ∧ 𝑉 ∈ 𝐹) → (𝑈 ∩ 𝑉) ≠ ∅) |
21 | 4, 12, 19, 20 | syl3anc 1370 |
1
⊢ (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈 ∈ 𝐽 ∧ 𝑉 ∈ 𝐽) ∧ (𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉)) → (𝑈 ∩ 𝑉) ≠ ∅) |