MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflimlem Structured version   Visualization version   GIF version

Theorem hausflimlem 22876
Description: If 𝐴 and 𝐵 are both limits of the same filter, then all neighborhoods of 𝐴 and 𝐵 intersect. (Contributed by Mario Carneiro, 21-Sep-2015.)
Assertion
Ref Expression
hausflimlem (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → (𝑈𝑉) ≠ ∅)

Proof of Theorem hausflimlem
StepHypRef Expression
1 simp1l 1199 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐴 ∈ (𝐽 fLim 𝐹))
2 eqid 2737 . . . 4 𝐽 = 𝐽
32flimfil 22866 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
41, 3syl 17 . 2 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐹 ∈ (Fil‘ 𝐽))
5 flimtop 22862 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
61, 5syl 17 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐽 ∈ Top)
7 simp2l 1201 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑈𝐽)
8 simp3l 1203 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐴𝑈)
9 opnneip 22016 . . . 4 ((𝐽 ∈ Top ∧ 𝑈𝐽𝐴𝑈) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴}))
106, 7, 8, 9syl3anc 1373 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴}))
11 flimnei 22864 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑈 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑈𝐹)
121, 10, 11syl2anc 587 . 2 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑈𝐹)
13 simp1r 1200 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐵 ∈ (𝐽 fLim 𝐹))
14 simp2r 1202 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑉𝐽)
15 simp3r 1204 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐵𝑉)
16 opnneip 22016 . . . 4 ((𝐽 ∈ Top ∧ 𝑉𝐽𝐵𝑉) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵}))
176, 14, 15, 16syl3anc 1373 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵}))
18 flimnei 22864 . . 3 ((𝐵 ∈ (𝐽 fLim 𝐹) ∧ 𝑉 ∈ ((nei‘𝐽)‘{𝐵})) → 𝑉𝐹)
1913, 17, 18syl2anc 587 . 2 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑉𝐹)
20 filinn0 22757 . 2 ((𝐹 ∈ (Fil‘ 𝐽) ∧ 𝑈𝐹𝑉𝐹) → (𝑈𝑉) ≠ ∅)
214, 12, 19, 20syl3anc 1373 1 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → (𝑈𝑉) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2110  wne 2940  cin 3865  c0 4237  {csn 4541   cuni 4819  cfv 6380  (class class class)co 7213  Topctop 21790  neicnei 21994  Filcfil 22742   fLim cflim 22831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-fbas 20360  df-top 21791  df-nei 21995  df-fil 22743  df-flim 22836
This theorem is referenced by:  hausflimi  22877
  Copyright terms: Public domain W3C validator