MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflimlem Structured version   Visualization version   GIF version

Theorem hausflimlem 23038
Description: If 𝐴 and 𝐵 are both limits of the same filter, then all neighborhoods of 𝐴 and 𝐵 intersect. (Contributed by Mario Carneiro, 21-Sep-2015.)
Assertion
Ref Expression
hausflimlem (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → (𝑈𝑉) ≠ ∅)

Proof of Theorem hausflimlem
StepHypRef Expression
1 simp1l 1195 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐴 ∈ (𝐽 fLim 𝐹))
2 eqid 2738 . . . 4 𝐽 = 𝐽
32flimfil 23028 . . 3 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
41, 3syl 17 . 2 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐹 ∈ (Fil‘ 𝐽))
5 flimtop 23024 . . . . 5 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐽 ∈ Top)
61, 5syl 17 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐽 ∈ Top)
7 simp2l 1197 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑈𝐽)
8 simp3l 1199 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐴𝑈)
9 opnneip 22178 . . . 4 ((𝐽 ∈ Top ∧ 𝑈𝐽𝐴𝑈) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴}))
106, 7, 8, 9syl3anc 1369 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑈 ∈ ((nei‘𝐽)‘{𝐴}))
11 flimnei 23026 . . 3 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝑈 ∈ ((nei‘𝐽)‘{𝐴})) → 𝑈𝐹)
121, 10, 11syl2anc 583 . 2 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑈𝐹)
13 simp1r 1196 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐵 ∈ (𝐽 fLim 𝐹))
14 simp2r 1198 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑉𝐽)
15 simp3r 1200 . . . 4 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝐵𝑉)
16 opnneip 22178 . . . 4 ((𝐽 ∈ Top ∧ 𝑉𝐽𝐵𝑉) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵}))
176, 14, 15, 16syl3anc 1369 . . 3 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑉 ∈ ((nei‘𝐽)‘{𝐵}))
18 flimnei 23026 . . 3 ((𝐵 ∈ (𝐽 fLim 𝐹) ∧ 𝑉 ∈ ((nei‘𝐽)‘{𝐵})) → 𝑉𝐹)
1913, 17, 18syl2anc 583 . 2 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → 𝑉𝐹)
20 filinn0 22919 . 2 ((𝐹 ∈ (Fil‘ 𝐽) ∧ 𝑈𝐹𝑉𝐹) → (𝑈𝑉) ≠ ∅)
214, 12, 19, 20syl3anc 1369 1 (((𝐴 ∈ (𝐽 fLim 𝐹) ∧ 𝐵 ∈ (𝐽 fLim 𝐹)) ∧ (𝑈𝐽𝑉𝐽) ∧ (𝐴𝑈𝐵𝑉)) → (𝑈𝑉) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085  wcel 2108  wne 2942  cin 3882  c0 4253  {csn 4558   cuni 4836  cfv 6418  (class class class)co 7255  Topctop 21950  neicnei 22156  Filcfil 22904   fLim cflim 22993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-fbas 20507  df-top 21951  df-nei 22157  df-fil 22905  df-flim 22998
This theorem is referenced by:  hausflimi  23039
  Copyright terms: Public domain W3C validator