| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimcfil | Structured version Visualization version GIF version | ||
| Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| lmcau.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| flimcfil | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | flimfil 23884 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 4 | lmcau.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 5 | 4 | mopnuni 24356 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝑋 = ∪ 𝐽) |
| 7 | 6 | fveq2d 6826 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (Fil‘𝑋) = (Fil‘∪ 𝐽)) |
| 8 | 3, 7 | eleqtrrd 2834 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
| 9 | 1 | flimelbas 23883 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ ∪ 𝐽) |
| 10 | 9 | ad2antlr 727 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ∪ 𝐽) |
| 11 | 5 | ad2antrr 726 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑋 = ∪ 𝐽) |
| 12 | 10, 11 | eleqtrrd 2834 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ 𝑋) |
| 13 | simplr 768 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐽 fLim 𝐹)) | |
| 14 | 4 | mopntop 24355 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐽 ∈ Top) |
| 16 | simpll 766 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 17 | rpxr 12900 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ*) | |
| 18 | 17 | adantl 481 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ*) |
| 19 | 4 | blopn 24415 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽) |
| 20 | 16, 12, 18, 19 | syl3anc 1373 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽) |
| 21 | simpr 484 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
| 22 | blcntr 24328 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) | |
| 23 | 16, 12, 21, 22 | syl3anc 1373 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) |
| 24 | opnneip 23034 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐽 ∧ 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) | |
| 25 | 15, 20, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) |
| 26 | flimnei 23882 | . . . . 5 ⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) | |
| 27 | 13, 25, 26 | syl2anc 584 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) |
| 28 | oveq1 7353 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦(ball‘𝐷)𝑥) = (𝐴(ball‘𝐷)𝑥)) | |
| 29 | 28 | eleq1d 2816 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦(ball‘𝐷)𝑥) ∈ 𝐹 ↔ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹)) |
| 30 | 29 | rspcev 3572 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) → ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
| 31 | 12, 27, 30 | syl2anc 584 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
| 32 | 31 | ralrimiva 3124 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
| 33 | iscfil3 25200 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹))) | |
| 34 | 33 | adantr 480 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹))) |
| 35 | 8, 32, 34 | mpbir2and 713 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {csn 4573 ∪ cuni 4856 ‘cfv 6481 (class class class)co 7346 ℝ*cxr 11145 ℝ+crp 12890 ∞Metcxmet 21276 ballcbl 21278 MetOpencmopn 21281 Topctop 22808 neicnei 23012 Filcfil 23760 fLim cflim 23849 CauFilccfil 25179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ico 13251 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-bl 21286 df-mopn 21287 df-fbas 21288 df-top 22809 df-topon 22826 df-bases 22861 df-nei 23013 df-fil 23761 df-flim 23854 df-cfil 25182 |
| This theorem is referenced by: metsscmetcld 25242 fmcncfil 33944 |
| Copyright terms: Public domain | W3C validator |