MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flimcfil Structured version   Visualization version   GIF version

Theorem flimcfil 24459
Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Hypothesis
Ref Expression
lmcau.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
flimcfil ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷))

Proof of Theorem flimcfil
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . . . 5 𝐽 = 𝐽
21flimfil 23101 . . . 4 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘ 𝐽))
32adantl 481 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘ 𝐽))
4 lmcau.1 . . . . . 6 𝐽 = (MetOpen‘𝐷)
54mopnuni 23575 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
65adantr 480 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝑋 = 𝐽)
76fveq2d 6772 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (Fil‘𝑋) = (Fil‘ 𝐽))
83, 7eleqtrrd 2843 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
91flimelbas 23100 . . . . . 6 (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 𝐽)
109ad2antlr 723 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 𝐽)
115ad2antrr 722 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑋 = 𝐽)
1210, 11eleqtrrd 2843 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴𝑋)
13 simplr 765 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐽 fLim 𝐹))
144mopntop 23574 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
1514ad2antrr 722 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐽 ∈ Top)
16 simpll 763 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
17 rpxr 12721 . . . . . . . 8 (𝑥 ∈ ℝ+𝑥 ∈ ℝ*)
1817adantl 481 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ*)
194blopn 23637 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑥 ∈ ℝ*) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽)
2016, 12, 18, 19syl3anc 1369 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽)
21 simpr 484 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
22 blcntr 23547 . . . . . . 7 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥))
2316, 12, 21, 22syl3anc 1369 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥))
24 opnneip 22251 . . . . . 6 ((𝐽 ∈ Top ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐽𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴}))
2515, 20, 23, 24syl3anc 1369 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴}))
26 flimnei 23099 . . . . 5 ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹)
2713, 25, 26syl2anc 583 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹)
28 oveq1 7275 . . . . . 6 (𝑦 = 𝐴 → (𝑦(ball‘𝐷)𝑥) = (𝐴(ball‘𝐷)𝑥))
2928eleq1d 2824 . . . . 5 (𝑦 = 𝐴 → ((𝑦(ball‘𝐷)𝑥) ∈ 𝐹 ↔ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹))
3029rspcev 3560 . . . 4 ((𝐴𝑋 ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) → ∃𝑦𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹)
3112, 27, 30syl2anc 583 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹)
3231ralrimiva 3109 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → ∀𝑥 ∈ ℝ+𝑦𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹)
33 iscfil3 24418 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹)))
3433adantr 480 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+𝑦𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹)))
358, 32, 34mpbir2and 709 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  wrex 3066  {csn 4566   cuni 4844  cfv 6430  (class class class)co 7268  *cxr 10992  +crp 12712  ∞Metcxmet 20563  ballcbl 20565  MetOpencmopn 20568  Topctop 22023  neicnei 22229  Filcfil 22977   fLim cflim 23066  CauFilccfil 24397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ico 13067  df-topgen 17135  df-psmet 20570  df-xmet 20571  df-bl 20573  df-mopn 20574  df-fbas 20575  df-top 22024  df-topon 22041  df-bases 22077  df-nei 22230  df-fil 22978  df-flim 23071  df-cfil 24400
This theorem is referenced by:  metsscmetcld  24460  fmcncfil  31860
  Copyright terms: Public domain W3C validator