| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flimcfil | Structured version Visualization version GIF version | ||
| Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| lmcau.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
| Ref | Expression |
|---|---|
| flimcfil | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | flimfil 23889 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
| 4 | lmcau.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
| 5 | 4 | mopnuni 24362 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
| 6 | 5 | adantr 480 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝑋 = ∪ 𝐽) |
| 7 | 6 | fveq2d 6844 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (Fil‘𝑋) = (Fil‘∪ 𝐽)) |
| 8 | 3, 7 | eleqtrrd 2831 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
| 9 | 1 | flimelbas 23888 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ ∪ 𝐽) |
| 10 | 9 | ad2antlr 727 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ∪ 𝐽) |
| 11 | 5 | ad2antrr 726 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑋 = ∪ 𝐽) |
| 12 | 10, 11 | eleqtrrd 2831 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ 𝑋) |
| 13 | simplr 768 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐽 fLim 𝐹)) | |
| 14 | 4 | mopntop 24361 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
| 15 | 14 | ad2antrr 726 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐽 ∈ Top) |
| 16 | simpll 766 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 17 | rpxr 12937 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ*) | |
| 18 | 17 | adantl 481 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ*) |
| 19 | 4 | blopn 24421 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽) |
| 20 | 16, 12, 18, 19 | syl3anc 1373 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽) |
| 21 | simpr 484 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
| 22 | blcntr 24334 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) | |
| 23 | 16, 12, 21, 22 | syl3anc 1373 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) |
| 24 | opnneip 23039 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐽 ∧ 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) | |
| 25 | 15, 20, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) |
| 26 | flimnei 23887 | . . . . 5 ⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) | |
| 27 | 13, 25, 26 | syl2anc 584 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) |
| 28 | oveq1 7376 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦(ball‘𝐷)𝑥) = (𝐴(ball‘𝐷)𝑥)) | |
| 29 | 28 | eleq1d 2813 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦(ball‘𝐷)𝑥) ∈ 𝐹 ↔ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹)) |
| 30 | 29 | rspcev 3585 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) → ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
| 31 | 12, 27, 30 | syl2anc 584 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
| 32 | 31 | ralrimiva 3125 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
| 33 | iscfil3 25206 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹))) | |
| 34 | 33 | adantr 480 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹))) |
| 35 | 8, 32, 34 | mpbir2and 713 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {csn 4585 ∪ cuni 4867 ‘cfv 6499 (class class class)co 7369 ℝ*cxr 11183 ℝ+crp 12927 ∞Metcxmet 21281 ballcbl 21283 MetOpencmopn 21286 Topctop 22813 neicnei 23017 Filcfil 23765 fLim cflim 23854 CauFilccfil 25185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ico 13288 df-topgen 17382 df-psmet 21288 df-xmet 21289 df-bl 21291 df-mopn 21292 df-fbas 21293 df-top 22814 df-topon 22831 df-bases 22866 df-nei 23018 df-fil 23766 df-flim 23859 df-cfil 25188 |
| This theorem is referenced by: metsscmetcld 25248 fmcncfil 33914 |
| Copyright terms: Public domain | W3C validator |