Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > flimcfil | Structured version Visualization version GIF version |
Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
lmcau.1 | ⊢ 𝐽 = (MetOpen‘𝐷) |
Ref | Expression |
---|---|
flimcfil | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | flimfil 23165 | . . . 4 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
3 | 2 | adantl 483 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘∪ 𝐽)) |
4 | lmcau.1 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
5 | 4 | mopnuni 23639 | . . . . 5 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
6 | 5 | adantr 482 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝑋 = ∪ 𝐽) |
7 | 6 | fveq2d 6808 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (Fil‘𝑋) = (Fil‘∪ 𝐽)) |
8 | 3, 7 | eleqtrrd 2840 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
9 | 1 | flimelbas 23164 | . . . . . 6 ⊢ (𝐴 ∈ (𝐽 fLim 𝐹) → 𝐴 ∈ ∪ 𝐽) |
10 | 9 | ad2antlr 725 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ∪ 𝐽) |
11 | 5 | ad2antrr 724 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑋 = ∪ 𝐽) |
12 | 10, 11 | eleqtrrd 2840 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ 𝑋) |
13 | simplr 767 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐽 fLim 𝐹)) | |
14 | 4 | mopntop 23638 | . . . . . . 7 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
15 | 14 | ad2antrr 724 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐽 ∈ Top) |
16 | simpll 765 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋)) | |
17 | rpxr 12785 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ*) | |
18 | 17 | adantl 483 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ*) |
19 | 4 | blopn 23701 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ*) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽) |
20 | 16, 12, 18, 19 | syl3anc 1371 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐽) |
21 | simpr 486 | . . . . . . 7 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+) | |
22 | blcntr 23611 | . . . . . . 7 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) | |
23 | 16, 12, 21, 22 | syl3anc 1371 | . . . . . 6 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) |
24 | opnneip 22315 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐽 ∧ 𝐴 ∈ (𝐴(ball‘𝐷)𝑥)) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) | |
25 | 15, 20, 23, 24 | syl3anc 1371 | . . . . 5 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) |
26 | flimnei 23163 | . . . . 5 ⊢ ((𝐴 ∈ (𝐽 fLim 𝐹) ∧ (𝐴(ball‘𝐷)𝑥) ∈ ((nei‘𝐽)‘{𝐴})) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) | |
27 | 13, 25, 26 | syl2anc 585 | . . . 4 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) |
28 | oveq1 7314 | . . . . . 6 ⊢ (𝑦 = 𝐴 → (𝑦(ball‘𝐷)𝑥) = (𝐴(ball‘𝐷)𝑥)) | |
29 | 28 | eleq1d 2821 | . . . . 5 ⊢ (𝑦 = 𝐴 → ((𝑦(ball‘𝐷)𝑥) ∈ 𝐹 ↔ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹)) |
30 | 29 | rspcev 3566 | . . . 4 ⊢ ((𝐴 ∈ 𝑋 ∧ (𝐴(ball‘𝐷)𝑥) ∈ 𝐹) → ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
31 | 12, 27, 30 | syl2anc 585 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
32 | 31 | ralrimiva 3140 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹) |
33 | iscfil3 24482 | . . 3 ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹))) | |
34 | 33 | adantr 482 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑋 (𝑦(ball‘𝐷)𝑥) ∈ 𝐹))) |
35 | 8, 32, 34 | mpbir2and 711 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ (𝐽 fLim 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 ∃wrex 3071 {csn 4565 ∪ cuni 4844 ‘cfv 6458 (class class class)co 7307 ℝ*cxr 11054 ℝ+crp 12776 ∞Metcxmet 20627 ballcbl 20629 MetOpencmopn 20632 Topctop 22087 neicnei 22293 Filcfil 23041 fLim cflim 23130 CauFilccfil 24461 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 ax-pre-sup 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-sup 9245 df-inf 9246 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-div 11679 df-nn 12020 df-2 12082 df-n0 12280 df-z 12366 df-uz 12629 df-q 12735 df-rp 12777 df-xneg 12894 df-xadd 12895 df-xmul 12896 df-ico 13131 df-topgen 17199 df-psmet 20634 df-xmet 20635 df-bl 20637 df-mopn 20638 df-fbas 20639 df-top 22088 df-topon 22105 df-bases 22141 df-nei 22294 df-fil 23042 df-flim 23135 df-cfil 24464 |
This theorem is referenced by: metsscmetcld 24524 fmcncfil 31926 |
Copyright terms: Public domain | W3C validator |