Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnebas Structured version   Visualization version   GIF version

Theorem fnebas 36345
Description: A finer cover covers the same set as the original. (Contributed by Jeff Hankins, 28-Sep-2009.)
Hypotheses
Ref Expression
fnebas.1 𝑋 = 𝐴
fnebas.2 𝑌 = 𝐵
Assertion
Ref Expression
fnebas (𝐴Fne𝐵𝑋 = 𝑌)

Proof of Theorem fnebas
StepHypRef Expression
1 fnebas.1 . . 3 𝑋 = 𝐴
2 fnebas.2 . . 3 𝑌 = 𝐵
31, 2isfne4 36341 . 2 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
43simplbi 497 1 (𝐴Fne𝐵𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3951   cuni 4907   class class class wbr 5143  cfv 6561  topGenctg 17482  Fnecfne 36337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-topgen 17488  df-fne 36338
This theorem is referenced by:  fnetr  36352  fnessref  36358  fnemeet2  36368  fnejoin2  36370
  Copyright terms: Public domain W3C validator