![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnebas | Structured version Visualization version GIF version |
Description: A finer cover covers the same set as the original. (Contributed by Jeff Hankins, 28-Sep-2009.) |
Ref | Expression |
---|---|
fnebas.1 | ⊢ 𝑋 = ∪ 𝐴 |
fnebas.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
fnebas | ⊢ (𝐴Fne𝐵 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnebas.1 | . . 3 ⊢ 𝑋 = ∪ 𝐴 | |
2 | fnebas.2 | . . 3 ⊢ 𝑌 = ∪ 𝐵 | |
3 | 1, 2 | isfne4 33149 | . 2 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
4 | 3 | simplbi 490 | 1 ⊢ (𝐴Fne𝐵 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ⊆ wss 3825 ∪ cuni 4706 class class class wbr 4923 ‘cfv 6182 topGenctg 16557 Fnecfne 33145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-iota 6146 df-fun 6184 df-fv 6190 df-topgen 16563 df-fne 33146 |
This theorem is referenced by: fnetr 33160 fnessref 33166 fnemeet2 33176 fnejoin2 33178 |
Copyright terms: Public domain | W3C validator |