Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnebas Structured version   Visualization version   GIF version

Theorem fnebas 35693
Description: A finer cover covers the same set as the original. (Contributed by Jeff Hankins, 28-Sep-2009.)
Hypotheses
Ref Expression
fnebas.1 𝑋 = βˆͺ 𝐴
fnebas.2 π‘Œ = βˆͺ 𝐡
Assertion
Ref Expression
fnebas (𝐴Fne𝐡 β†’ 𝑋 = π‘Œ)

Proof of Theorem fnebas
StepHypRef Expression
1 fnebas.1 . . 3 𝑋 = βˆͺ 𝐴
2 fnebas.2 . . 3 π‘Œ = βˆͺ 𝐡
31, 2isfne4 35689 . 2 (𝐴Fne𝐡 ↔ (𝑋 = π‘Œ ∧ 𝐴 βŠ† (topGenβ€˜π΅)))
43simplbi 497 1 (𝐴Fne𝐡 β†’ 𝑋 = π‘Œ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1540   βŠ† wss 3948  βˆͺ cuni 4908   class class class wbr 5148  β€˜cfv 6543  topGenctg 17390  Fnecfne 35685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-topgen 17396  df-fne 35686
This theorem is referenced by:  fnetr  35700  fnessref  35706  fnemeet2  35716  fnejoin2  35718
  Copyright terms: Public domain W3C validator