Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnebas Structured version   Visualization version   GIF version

Theorem fnebas 33153
Description: A finer cover covers the same set as the original. (Contributed by Jeff Hankins, 28-Sep-2009.)
Hypotheses
Ref Expression
fnebas.1 𝑋 = 𝐴
fnebas.2 𝑌 = 𝐵
Assertion
Ref Expression
fnebas (𝐴Fne𝐵𝑋 = 𝑌)

Proof of Theorem fnebas
StepHypRef Expression
1 fnebas.1 . . 3 𝑋 = 𝐴
2 fnebas.2 . . 3 𝑌 = 𝐵
31, 2isfne4 33149 . 2 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
43simplbi 490 1 (𝐴Fne𝐵𝑋 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1507  wss 3825   cuni 4706   class class class wbr 4923  cfv 6182  topGenctg 16557  Fnecfne 33145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ral 3087  df-rex 3088  df-rab 3091  df-v 3411  df-sbc 3678  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5305  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-iota 6146  df-fun 6184  df-fv 6190  df-topgen 16563  df-fne 33146
This theorem is referenced by:  fnetr  33160  fnessref  33166  fnemeet2  33176  fnejoin2  33178
  Copyright terms: Public domain W3C validator