Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnebas | Structured version Visualization version GIF version |
Description: A finer cover covers the same set as the original. (Contributed by Jeff Hankins, 28-Sep-2009.) |
Ref | Expression |
---|---|
fnebas.1 | ⊢ 𝑋 = ∪ 𝐴 |
fnebas.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
fnebas | ⊢ (𝐴Fne𝐵 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnebas.1 | . . 3 ⊢ 𝑋 = ∪ 𝐴 | |
2 | fnebas.2 | . . 3 ⊢ 𝑌 = ∪ 𝐵 | |
3 | 1, 2 | isfne4 34266 | . 2 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
4 | 3 | simplbi 501 | 1 ⊢ (𝐴Fne𝐵 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ⊆ wss 3866 ∪ cuni 4819 class class class wbr 5053 ‘cfv 6380 topGenctg 16942 Fnecfne 34262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-topgen 16948 df-fne 34263 |
This theorem is referenced by: fnetr 34277 fnessref 34283 fnemeet2 34293 fnejoin2 34295 |
Copyright terms: Public domain | W3C validator |