![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne3 | Structured version Visualization version GIF version |
Description: The predicate "𝐵 is finer than 𝐴". (Contributed by Jeff Hankins, 11-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | ⊢ 𝑋 = ∪ 𝐴 |
isfne.2 | ⊢ 𝑌 = ∪ 𝐵 |
Ref | Expression |
---|---|
isfne3 | ⊢ (𝐵 ∈ 𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfne.1 | . . 3 ⊢ 𝑋 = ∪ 𝐴 | |
2 | isfne.2 | . . 3 ⊢ 𝑌 = ∪ 𝐵 | |
3 | 1, 2 | isfne4 32923 | . 2 ⊢ (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵))) |
4 | dfss3 3810 | . . . 4 ⊢ (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵)) | |
5 | eltg3 21174 | . . . . 5 ⊢ (𝐵 ∈ 𝐶 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) | |
6 | 5 | ralbidv 3168 | . . . 4 ⊢ (𝐵 ∈ 𝐶 → (∀𝑥 ∈ 𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
7 | 4, 6 | syl5bb 275 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦))) |
8 | 7 | anbi2d 622 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((𝑋 = 𝑌 ∧ 𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
9 | 3, 8 | syl5bb 275 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∃wex 1823 ∈ wcel 2107 ∀wral 3090 ⊆ wss 3792 ∪ cuni 4671 class class class wbr 4886 ‘cfv 6135 topGenctg 16484 Fnecfne 32919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-sbc 3653 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-iota 6099 df-fun 6137 df-fv 6143 df-topgen 16490 df-fne 32920 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |