Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isfne3 Structured version   Visualization version   GIF version

Theorem isfne3 36361
Description: The predicate "𝐵 is finer than 𝐴". (Contributed by Jeff Hankins, 11-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
isfne.1 𝑋 = 𝐴
isfne.2 𝑌 = 𝐵
Assertion
Ref Expression
isfne3 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦(𝑦𝐵𝑥 = 𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦
Allowed substitution hints:   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)

Proof of Theorem isfne3
StepHypRef Expression
1 isfne.1 . . 3 𝑋 = 𝐴
2 isfne.2 . . 3 𝑌 = 𝐵
31, 2isfne4 36358 . 2 (𝐴Fne𝐵 ↔ (𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)))
4 dfss3 3947 . . . 4 (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵))
5 eltg3 22900 . . . . 5 (𝐵𝐶 → (𝑥 ∈ (topGen‘𝐵) ↔ ∃𝑦(𝑦𝐵𝑥 = 𝑦)))
65ralbidv 3163 . . . 4 (𝐵𝐶 → (∀𝑥𝐴 𝑥 ∈ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝑥 = 𝑦)))
74, 6bitrid 283 . . 3 (𝐵𝐶 → (𝐴 ⊆ (topGen‘𝐵) ↔ ∀𝑥𝐴𝑦(𝑦𝐵𝑥 = 𝑦)))
87anbi2d 630 . 2 (𝐵𝐶 → ((𝑋 = 𝑌𝐴 ⊆ (topGen‘𝐵)) ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦(𝑦𝐵𝑥 = 𝑦))))
93, 8bitrid 283 1 (𝐵𝐶 → (𝐴Fne𝐵 ↔ (𝑋 = 𝑌 ∧ ∀𝑥𝐴𝑦(𝑦𝐵𝑥 = 𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  wss 3926   cuni 4883   class class class wbr 5119  cfv 6531  topGenctg 17451  Fnecfne 36354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-topgen 17457  df-fne 36355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator