![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isfne3 | Structured version Visualization version GIF version |
Description: The predicate "π΅ is finer than π΄". (Contributed by Jeff Hankins, 11-Oct-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
isfne.1 | β’ π = βͺ π΄ |
isfne.2 | β’ π = βͺ π΅ |
Ref | Expression |
---|---|
isfne3 | β’ (π΅ β πΆ β (π΄Fneπ΅ β (π = π β§ βπ₯ β π΄ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfne.1 | . . 3 β’ π = βͺ π΄ | |
2 | isfne.2 | . . 3 β’ π = βͺ π΅ | |
3 | 1, 2 | isfne4 35691 | . 2 β’ (π΄Fneπ΅ β (π = π β§ π΄ β (topGenβπ΅))) |
4 | dfss3 3970 | . . . 4 β’ (π΄ β (topGenβπ΅) β βπ₯ β π΄ π₯ β (topGenβπ΅)) | |
5 | eltg3 22785 | . . . . 5 β’ (π΅ β πΆ β (π₯ β (topGenβπ΅) β βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) | |
6 | 5 | ralbidv 3176 | . . . 4 β’ (π΅ β πΆ β (βπ₯ β π΄ π₯ β (topGenβπ΅) β βπ₯ β π΄ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
7 | 4, 6 | bitrid 283 | . . 3 β’ (π΅ β πΆ β (π΄ β (topGenβπ΅) β βπ₯ β π΄ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦))) |
8 | 7 | anbi2d 628 | . 2 β’ (π΅ β πΆ β ((π = π β§ π΄ β (topGenβπ΅)) β (π = π β§ βπ₯ β π΄ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦)))) |
9 | 3, 8 | bitrid 283 | 1 β’ (π΅ β πΆ β (π΄Fneπ΅ β (π = π β§ βπ₯ β π΄ βπ¦(π¦ β π΅ β§ π₯ = βͺ π¦)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 βwex 1780 β wcel 2105 βwral 3060 β wss 3948 βͺ cuni 4908 class class class wbr 5148 βcfv 6543 topGenctg 17390 Fnecfne 35687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-topgen 17396 df-fne 35688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |