Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin2 Structured version   Visualization version   GIF version

Theorem fnejoin2 33830
Description: Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑉   𝑥,𝑋,𝑦   𝑥,𝑇
Allowed substitution hints:   𝑇(𝑦)   𝑉(𝑦)

Proof of Theorem fnejoin2
StepHypRef Expression
1 unisng 4819 . . . . . . . . 9 (𝑋𝑉 {𝑋} = 𝑋)
21eqcomd 2804 . . . . . . . 8 (𝑋𝑉𝑋 = {𝑋})
32adantr 484 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → 𝑋 = {𝑋})
4 iftrue 4431 . . . . . . . . 9 (𝑆 = ∅ → if(𝑆 = ∅, {𝑋}, 𝑆) = {𝑋})
54unieqd 4814 . . . . . . . 8 (𝑆 = ∅ → if(𝑆 = ∅, {𝑋}, 𝑆) = {𝑋})
65eqeq2d 2809 . . . . . . 7 (𝑆 = ∅ → (𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆) ↔ 𝑋 = {𝑋}))
73, 6syl5ibrcom 250 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 = ∅ → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆)))
8 n0 4260 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
9 unieq 4811 . . . . . . . . . . . . 13 (𝑦 = 𝑥 𝑦 = 𝑥)
109eqeq2d 2809 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑋 = 𝑦𝑋 = 𝑥))
1110rspccva 3570 . . . . . . . . . . 11 ((∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
12113adant1 1127 . . . . . . . . . 10 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
13 fnejoin1 33829 . . . . . . . . . . 11 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑥Fneif(𝑆 = ∅, {𝑋}, 𝑆))
14 eqid 2798 . . . . . . . . . . . 12 𝑥 = 𝑥
15 eqid 2798 . . . . . . . . . . . 12 if(𝑆 = ∅, {𝑋}, 𝑆) = if(𝑆 = ∅, {𝑋}, 𝑆)
1614, 15fnebas 33805 . . . . . . . . . . 11 (𝑥Fneif(𝑆 = ∅, {𝑋}, 𝑆) → 𝑥 = if(𝑆 = ∅, {𝑋}, 𝑆))
1713, 16syl 17 . . . . . . . . . 10 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑥 = if(𝑆 = ∅, {𝑋}, 𝑆))
1812, 17eqtrd 2833 . . . . . . . . 9 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆))
19183expia 1118 . . . . . . . 8 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑥𝑆𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆)))
2019exlimdv 1934 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (∃𝑥 𝑥𝑆𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆)))
218, 20syl5bi 245 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 ≠ ∅ → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆)))
227, 21pm2.61dne 3073 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆))
23 eqid 2798 . . . . . 6 𝑇 = 𝑇
2415, 23fnebas 33805 . . . . 5 (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑇)
2522, 24sylan9eq 2853 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇) → 𝑋 = 𝑇)
2625ex 416 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇𝑋 = 𝑇))
27 fnetr 33812 . . . . . . 7 ((𝑥Fneif(𝑆 = ∅, {𝑋}, 𝑆) ∧ if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇) → 𝑥Fne𝑇)
2827ex 416 . . . . . 6 (𝑥Fneif(𝑆 = ∅, {𝑋}, 𝑆) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇𝑥Fne𝑇))
2913, 28syl 17 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇𝑥Fne𝑇))
30293expa 1115 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑥𝑆) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇𝑥Fne𝑇))
3130ralrimdva 3154 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 → ∀𝑥𝑆 𝑥Fne𝑇))
3226, 31jcad 516 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 → (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)))
3322adantr 484 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆))
34 simprl 770 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑋 = 𝑇)
3533, 34eqtr3d 2835 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑇)
36 sseq1 3940 . . . . 5 ({𝑋} = if(𝑆 = ∅, {𝑋}, 𝑆) → ({𝑋} ⊆ (topGen‘𝑇) ↔ if(𝑆 = ∅, {𝑋}, 𝑆) ⊆ (topGen‘𝑇)))
37 sseq1 3940 . . . . 5 ( 𝑆 = if(𝑆 = ∅, {𝑋}, 𝑆) → ( 𝑆 ⊆ (topGen‘𝑇) ↔ if(𝑆 = ∅, {𝑋}, 𝑆) ⊆ (topGen‘𝑇)))
38 elex 3459 . . . . . . . . . . . 12 (𝑋𝑉𝑋 ∈ V)
3938ad2antrr 725 . . . . . . . . . . 11 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑋 ∈ V)
4034, 39eqeltrrd 2891 . . . . . . . . . 10 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑇 ∈ V)
41 uniexb 7466 . . . . . . . . . 10 (𝑇 ∈ V ↔ 𝑇 ∈ V)
4240, 41sylibr 237 . . . . . . . . 9 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑇 ∈ V)
43 ssid 3937 . . . . . . . . 9 𝑇𝑇
44 eltg3i 21566 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑇𝑇) → 𝑇 ∈ (topGen‘𝑇))
4542, 43, 44sylancl 589 . . . . . . . 8 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑇 ∈ (topGen‘𝑇))
4634, 45eqeltrd 2890 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑋 ∈ (topGen‘𝑇))
4746snssd 4702 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → {𝑋} ⊆ (topGen‘𝑇))
4847adantr 484 . . . . 5 ((((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) ∧ 𝑆 = ∅) → {𝑋} ⊆ (topGen‘𝑇))
49 simplrr 777 . . . . . . 7 ((((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) ∧ ¬ 𝑆 = ∅) → ∀𝑥𝑆 𝑥Fne𝑇)
50 fnetg 33806 . . . . . . . 8 (𝑥Fne𝑇𝑥 ⊆ (topGen‘𝑇))
5150ralimi 3128 . . . . . . 7 (∀𝑥𝑆 𝑥Fne𝑇 → ∀𝑥𝑆 𝑥 ⊆ (topGen‘𝑇))
5249, 51syl 17 . . . . . 6 ((((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) ∧ ¬ 𝑆 = ∅) → ∀𝑥𝑆 𝑥 ⊆ (topGen‘𝑇))
53 unissb 4832 . . . . . 6 ( 𝑆 ⊆ (topGen‘𝑇) ↔ ∀𝑥𝑆 𝑥 ⊆ (topGen‘𝑇))
5452, 53sylibr 237 . . . . 5 ((((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) ∧ ¬ 𝑆 = ∅) → 𝑆 ⊆ (topGen‘𝑇))
5536, 37, 48, 54ifbothda 4462 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → if(𝑆 = ∅, {𝑋}, 𝑆) ⊆ (topGen‘𝑇))
5615, 23isfne4 33801 . . . 4 (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 ↔ ( if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑇 ∧ if(𝑆 = ∅, {𝑋}, 𝑆) ⊆ (topGen‘𝑇)))
5735, 55, 56sylanbrc 586 . . 3 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇)
5857ex 416 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → ((𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇) → if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇))
5932, 58impbid 215 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  Vcvv 3441  wss 3881  c0 4243  ifcif 4425  {csn 4525   cuni 4800   class class class wbr 5030  cfv 6324  topGenctg 16703  Fnecfne 33797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-topgen 16709  df-fne 33798
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator