Step | Hyp | Ref
| Expression |
1 | | unisng 4928 |
. . . . . . . . 9
β’ (π β π β βͺ {π} = π) |
2 | 1 | eqcomd 2738 |
. . . . . . . 8
β’ (π β π β π = βͺ {π}) |
3 | 2 | adantr 481 |
. . . . . . 7
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β π = βͺ {π}) |
4 | | iftrue 4533 |
. . . . . . . . 9
β’ (π = β
β if(π = β
, {π}, βͺ π) = {π}) |
5 | 4 | unieqd 4921 |
. . . . . . . 8
β’ (π = β
β βͺ if(π
= β
, {π}, βͺ π) =
βͺ {π}) |
6 | 5 | eqeq2d 2743 |
. . . . . . 7
β’ (π = β
β (π = βͺ
if(π = β
, {π}, βͺ
π) β π = βͺ {π})) |
7 | 3, 6 | syl5ibrcom 246 |
. . . . . 6
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β (π = β
β π = βͺ if(π = β
, {π}, βͺ π))) |
8 | | n0 4345 |
. . . . . . 7
β’ (π β β
β
βπ₯ π₯ β π) |
9 | | unieq 4918 |
. . . . . . . . . . . . 13
β’ (π¦ = π₯ β βͺ π¦ = βͺ
π₯) |
10 | 9 | eqeq2d 2743 |
. . . . . . . . . . . 12
β’ (π¦ = π₯ β (π = βͺ π¦ β π = βͺ π₯)) |
11 | 10 | rspccva 3611 |
. . . . . . . . . . 11
β’
((βπ¦ β
π π = βͺ π¦ β§ π₯ β π) β π = βͺ π₯) |
12 | 11 | 3adant1 1130 |
. . . . . . . . . 10
β’ ((π β π β§ βπ¦ β π π = βͺ π¦ β§ π₯ β π) β π = βͺ π₯) |
13 | | fnejoin1 35241 |
. . . . . . . . . . 11
β’ ((π β π β§ βπ¦ β π π = βͺ π¦ β§ π₯ β π) β π₯Fneif(π = β
, {π}, βͺ π)) |
14 | | eqid 2732 |
. . . . . . . . . . . 12
β’ βͺ π₯ =
βͺ π₯ |
15 | | eqid 2732 |
. . . . . . . . . . . 12
β’ βͺ if(π
= β
, {π}, βͺ π) =
βͺ if(π = β
, {π}, βͺ π) |
16 | 14, 15 | fnebas 35217 |
. . . . . . . . . . 11
β’ (π₯Fneif(π = β
, {π}, βͺ π) β βͺ π₯ =
βͺ if(π = β
, {π}, βͺ π)) |
17 | 13, 16 | syl 17 |
. . . . . . . . . 10
β’ ((π β π β§ βπ¦ β π π = βͺ π¦ β§ π₯ β π) β βͺ π₯ = βͺ
if(π = β
, {π}, βͺ
π)) |
18 | 12, 17 | eqtrd 2772 |
. . . . . . . . 9
β’ ((π β π β§ βπ¦ β π π = βͺ π¦ β§ π₯ β π) β π = βͺ if(π = β
, {π}, βͺ π)) |
19 | 18 | 3expia 1121 |
. . . . . . . 8
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β (π₯ β π β π = βͺ if(π = β
, {π}, βͺ π))) |
20 | 19 | exlimdv 1936 |
. . . . . . 7
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β (βπ₯ π₯ β π β π = βͺ if(π = β
, {π}, βͺ π))) |
21 | 8, 20 | biimtrid 241 |
. . . . . 6
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β (π β β
β π = βͺ if(π = β
, {π}, βͺ π))) |
22 | 7, 21 | pm2.61dne 3028 |
. . . . 5
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β π = βͺ if(π = β
, {π}, βͺ π)) |
23 | | eqid 2732 |
. . . . . 6
β’ βͺ π =
βͺ π |
24 | 15, 23 | fnebas 35217 |
. . . . 5
β’ (if(π = β
, {π}, βͺ π)Fneπ β βͺ
if(π = β
, {π}, βͺ
π) = βͺ π) |
25 | 22, 24 | sylan9eq 2792 |
. . . 4
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ if(π = β
, {π}, βͺ π)Fneπ) β π = βͺ π) |
26 | 25 | ex 413 |
. . 3
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β (if(π = β
, {π}, βͺ π)Fneπ β π = βͺ π)) |
27 | | fnetr 35224 |
. . . . . . 7
β’ ((π₯Fneif(π = β
, {π}, βͺ π) β§ if(π = β
, {π}, βͺ π)Fneπ) β π₯Fneπ) |
28 | 27 | ex 413 |
. . . . . 6
β’ (π₯Fneif(π = β
, {π}, βͺ π) β (if(π = β
, {π}, βͺ π)Fneπ β π₯Fneπ)) |
29 | 13, 28 | syl 17 |
. . . . 5
β’ ((π β π β§ βπ¦ β π π = βͺ π¦ β§ π₯ β π) β (if(π = β
, {π}, βͺ π)Fneπ β π₯Fneπ)) |
30 | 29 | 3expa 1118 |
. . . 4
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ π₯ β π) β (if(π = β
, {π}, βͺ π)Fneπ β π₯Fneπ)) |
31 | 30 | ralrimdva 3154 |
. . 3
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β (if(π = β
, {π}, βͺ π)Fneπ β βπ₯ β π π₯Fneπ)) |
32 | 26, 31 | jcad 513 |
. 2
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β (if(π = β
, {π}, βͺ π)Fneπ β (π = βͺ π β§ βπ₯ β π π₯Fneπ))) |
33 | 22 | adantr 481 |
. . . . 5
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β π = βͺ if(π = β
, {π}, βͺ π)) |
34 | | simprl 769 |
. . . . 5
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β π = βͺ π) |
35 | 33, 34 | eqtr3d 2774 |
. . . 4
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β βͺ
if(π = β
, {π}, βͺ
π) = βͺ π) |
36 | | sseq1 4006 |
. . . . 5
β’ ({π} = if(π = β
, {π}, βͺ π) β ({π} β (topGenβπ) β if(π = β
, {π}, βͺ π) β (topGenβπ))) |
37 | | sseq1 4006 |
. . . . 5
β’ (βͺ π =
if(π = β
, {π}, βͺ
π) β (βͺ π
β (topGenβπ)
β if(π = β
,
{π}, βͺ π)
β (topGenβπ))) |
38 | | elex 3492 |
. . . . . . . . . . . 12
β’ (π β π β π β V) |
39 | 38 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β π β V) |
40 | 34, 39 | eqeltrrd 2834 |
. . . . . . . . . 10
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β βͺ π β V) |
41 | | uniexb 7747 |
. . . . . . . . . 10
β’ (π β V β βͺ π
β V) |
42 | 40, 41 | sylibr 233 |
. . . . . . . . 9
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β π β V) |
43 | | ssid 4003 |
. . . . . . . . 9
β’ π β π |
44 | | eltg3i 22455 |
. . . . . . . . 9
β’ ((π β V β§ π β π) β βͺ π β (topGenβπ)) |
45 | 42, 43, 44 | sylancl 586 |
. . . . . . . 8
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β βͺ π β (topGenβπ)) |
46 | 34, 45 | eqeltrd 2833 |
. . . . . . 7
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β π β (topGenβπ)) |
47 | 46 | snssd 4811 |
. . . . . 6
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β {π} β (topGenβπ)) |
48 | 47 | adantr 481 |
. . . . 5
β’ ((((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β§ π = β
) β {π} β (topGenβπ)) |
49 | | simplrr 776 |
. . . . . . 7
β’ ((((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β§ Β¬ π = β
) β βπ₯ β π π₯Fneπ) |
50 | | fnetg 35218 |
. . . . . . . 8
β’ (π₯Fneπ β π₯ β (topGenβπ)) |
51 | 50 | ralimi 3083 |
. . . . . . 7
β’
(βπ₯ β
π π₯Fneπ β βπ₯ β π π₯ β (topGenβπ)) |
52 | 49, 51 | syl 17 |
. . . . . 6
β’ ((((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β§ Β¬ π = β
) β βπ₯ β π π₯ β (topGenβπ)) |
53 | | unissb 4942 |
. . . . . 6
β’ (βͺ π
β (topGenβπ)
β βπ₯ β
π π₯ β (topGenβπ)) |
54 | 52, 53 | sylibr 233 |
. . . . 5
β’ ((((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β§ Β¬ π = β
) β βͺ π
β (topGenβπ)) |
55 | 36, 37, 48, 54 | ifbothda 4565 |
. . . 4
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β if(π = β
, {π}, βͺ π) β (topGenβπ)) |
56 | 15, 23 | isfne4 35213 |
. . . 4
β’ (if(π = β
, {π}, βͺ π)Fneπ β (βͺ
if(π = β
, {π}, βͺ
π) = βͺ π
β§ if(π = β
,
{π}, βͺ π)
β (topGenβπ))) |
57 | 35, 55, 56 | sylanbrc 583 |
. . 3
β’ (((π β π β§ βπ¦ β π π = βͺ π¦) β§ (π = βͺ π β§ βπ₯ β π π₯Fneπ)) β if(π = β
, {π}, βͺ π)Fneπ) |
58 | 57 | ex 413 |
. 2
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β ((π = βͺ π β§ βπ₯ β π π₯Fneπ) β if(π = β
, {π}, βͺ π)Fneπ)) |
59 | 32, 58 | impbid 211 |
1
β’ ((π β π β§ βπ¦ β π π = βͺ π¦) β (if(π = β
, {π}, βͺ π)Fneπ β (π = βͺ π β§ βπ₯ β π π₯Fneπ))) |