Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnejoin2 Structured version   Visualization version   GIF version

Theorem fnejoin2 32694
Description: Join of equivalence classes under the fineness relation-part two. (Contributed by Jeff Hankins, 8-Oct-2009.) (Proof shortened by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
fnejoin2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑉   𝑥,𝑋,𝑦   𝑥,𝑇
Allowed substitution hints:   𝑇(𝑦)   𝑉(𝑦)

Proof of Theorem fnejoin2
StepHypRef Expression
1 unisng 4656 . . . . . . . . 9 (𝑋𝑉 {𝑋} = 𝑋)
21eqcomd 2823 . . . . . . . 8 (𝑋𝑉𝑋 = {𝑋})
32adantr 468 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → 𝑋 = {𝑋})
4 iftrue 4296 . . . . . . . . 9 (𝑆 = ∅ → if(𝑆 = ∅, {𝑋}, 𝑆) = {𝑋})
54unieqd 4651 . . . . . . . 8 (𝑆 = ∅ → if(𝑆 = ∅, {𝑋}, 𝑆) = {𝑋})
65eqeq2d 2827 . . . . . . 7 (𝑆 = ∅ → (𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆) ↔ 𝑋 = {𝑋}))
73, 6syl5ibrcom 238 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 = ∅ → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆)))
8 n0 4143 . . . . . . 7 (𝑆 ≠ ∅ ↔ ∃𝑥 𝑥𝑆)
9 unieq 4649 . . . . . . . . . . . . 13 (𝑦 = 𝑥 𝑦 = 𝑥)
109eqeq2d 2827 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑋 = 𝑦𝑋 = 𝑥))
1110rspccva 3512 . . . . . . . . . . 11 ((∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
12113adant1 1153 . . . . . . . . . 10 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = 𝑥)
13 fnejoin1 32693 . . . . . . . . . . 11 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑥Fneif(𝑆 = ∅, {𝑋}, 𝑆))
14 eqid 2817 . . . . . . . . . . . 12 𝑥 = 𝑥
15 eqid 2817 . . . . . . . . . . . 12 if(𝑆 = ∅, {𝑋}, 𝑆) = if(𝑆 = ∅, {𝑋}, 𝑆)
1614, 15fnebas 32669 . . . . . . . . . . 11 (𝑥Fneif(𝑆 = ∅, {𝑋}, 𝑆) → 𝑥 = if(𝑆 = ∅, {𝑋}, 𝑆))
1713, 16syl 17 . . . . . . . . . 10 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑥 = if(𝑆 = ∅, {𝑋}, 𝑆))
1812, 17eqtrd 2851 . . . . . . . . 9 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆))
19183expia 1143 . . . . . . . 8 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑥𝑆𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆)))
2019exlimdv 2024 . . . . . . 7 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (∃𝑥 𝑥𝑆𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆)))
218, 20syl5bi 233 . . . . . 6 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (𝑆 ≠ ∅ → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆)))
227, 21pm2.61dne 3075 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆))
23 eqid 2817 . . . . . 6 𝑇 = 𝑇
2415, 23fnebas 32669 . . . . 5 (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑇)
2522, 24sylan9eq 2871 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇) → 𝑋 = 𝑇)
2625ex 399 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇𝑋 = 𝑇))
27 fnetr 32676 . . . . . . 7 ((𝑥Fneif(𝑆 = ∅, {𝑋}, 𝑆) ∧ if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇) → 𝑥Fne𝑇)
2827ex 399 . . . . . 6 (𝑥Fneif(𝑆 = ∅, {𝑋}, 𝑆) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇𝑥Fne𝑇))
2913, 28syl 17 . . . . 5 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦𝑥𝑆) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇𝑥Fne𝑇))
30293expa 1140 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ 𝑥𝑆) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇𝑥Fne𝑇))
3130ralrimdva 3168 . . 3 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 → ∀𝑥𝑆 𝑥Fne𝑇))
3226, 31jcad 504 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 → (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)))
3322adantr 468 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑋 = if(𝑆 = ∅, {𝑋}, 𝑆))
34 simprl 778 . . . . 5 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑋 = 𝑇)
3533, 34eqtr3d 2853 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑇)
36 sseq1 3834 . . . . 5 ({𝑋} = if(𝑆 = ∅, {𝑋}, 𝑆) → ({𝑋} ⊆ (topGen‘𝑇) ↔ if(𝑆 = ∅, {𝑋}, 𝑆) ⊆ (topGen‘𝑇)))
37 sseq1 3834 . . . . 5 ( 𝑆 = if(𝑆 = ∅, {𝑋}, 𝑆) → ( 𝑆 ⊆ (topGen‘𝑇) ↔ if(𝑆 = ∅, {𝑋}, 𝑆) ⊆ (topGen‘𝑇)))
38 elex 3417 . . . . . . . . . . . 12 (𝑋𝑉𝑋 ∈ V)
3938ad2antrr 708 . . . . . . . . . . 11 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑋 ∈ V)
4034, 39eqeltrrd 2897 . . . . . . . . . 10 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑇 ∈ V)
41 uniexb 7210 . . . . . . . . . 10 (𝑇 ∈ V ↔ 𝑇 ∈ V)
4240, 41sylibr 225 . . . . . . . . 9 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑇 ∈ V)
43 ssid 3831 . . . . . . . . 9 𝑇𝑇
44 eltg3i 20987 . . . . . . . . 9 ((𝑇 ∈ V ∧ 𝑇𝑇) → 𝑇 ∈ (topGen‘𝑇))
4542, 43, 44sylancl 576 . . . . . . . 8 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑇 ∈ (topGen‘𝑇))
4634, 45eqeltrd 2896 . . . . . . 7 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → 𝑋 ∈ (topGen‘𝑇))
4746snssd 4541 . . . . . 6 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → {𝑋} ⊆ (topGen‘𝑇))
4847adantr 468 . . . . 5 ((((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) ∧ 𝑆 = ∅) → {𝑋} ⊆ (topGen‘𝑇))
49 simplrr 787 . . . . . . 7 ((((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) ∧ ¬ 𝑆 = ∅) → ∀𝑥𝑆 𝑥Fne𝑇)
50 fnetg 32670 . . . . . . . 8 (𝑥Fne𝑇𝑥 ⊆ (topGen‘𝑇))
5150ralimi 3151 . . . . . . 7 (∀𝑥𝑆 𝑥Fne𝑇 → ∀𝑥𝑆 𝑥 ⊆ (topGen‘𝑇))
5249, 51syl 17 . . . . . 6 ((((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) ∧ ¬ 𝑆 = ∅) → ∀𝑥𝑆 𝑥 ⊆ (topGen‘𝑇))
53 unissb 4674 . . . . . 6 ( 𝑆 ⊆ (topGen‘𝑇) ↔ ∀𝑥𝑆 𝑥 ⊆ (topGen‘𝑇))
5452, 53sylibr 225 . . . . 5 ((((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) ∧ ¬ 𝑆 = ∅) → 𝑆 ⊆ (topGen‘𝑇))
5536, 37, 48, 54ifbothda 4327 . . . 4 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → if(𝑆 = ∅, {𝑋}, 𝑆) ⊆ (topGen‘𝑇))
5615, 23isfne4 32665 . . . 4 (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 ↔ ( if(𝑆 = ∅, {𝑋}, 𝑆) = 𝑇 ∧ if(𝑆 = ∅, {𝑋}, 𝑆) ⊆ (topGen‘𝑇)))
5735, 55, 56sylanbrc 574 . . 3 (((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) ∧ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)) → if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇)
5857ex 399 . 2 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → ((𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇) → if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇))
5932, 58impbid 203 1 ((𝑋𝑉 ∧ ∀𝑦𝑆 𝑋 = 𝑦) → (if(𝑆 = ∅, {𝑋}, 𝑆)Fne𝑇 ↔ (𝑋 = 𝑇 ∧ ∀𝑥𝑆 𝑥Fne𝑇)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wex 1859  wcel 2157  wne 2989  wral 3107  Vcvv 3402  wss 3780  c0 4127  ifcif 4290  {csn 4381   cuni 4641   class class class wbr 4855  cfv 6108  topGenctg 16310  Fnecfne 32661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-sep 4986  ax-nul 4994  ax-pow 5046  ax-pr 5107  ax-un 7186
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-ral 3112  df-rex 3113  df-rab 3116  df-v 3404  df-sbc 3645  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-op 4388  df-uni 4642  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-id 5230  df-xp 5328  df-rel 5329  df-cnv 5330  df-co 5331  df-dm 5332  df-iota 6071  df-fun 6110  df-fv 6116  df-topgen 16316  df-fne 32662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator