Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnetg Structured version   Visualization version   GIF version

Theorem fnetg 36412
Description: A finer cover generates a topology finer than the original set. (Contributed by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
fnetg (𝐴Fne𝐵𝐴 ⊆ (topGen‘𝐵))

Proof of Theorem fnetg
StepHypRef Expression
1 eqid 2733 . . 3 𝐴 = 𝐴
2 eqid 2733 . . 3 𝐵 = 𝐵
31, 2isfne4 36407 . 2 (𝐴Fne𝐵 ↔ ( 𝐴 = 𝐵𝐴 ⊆ (topGen‘𝐵)))
43simprbi 496 1 (𝐴Fne𝐵𝐴 ⊆ (topGen‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wss 3898   cuni 4860   class class class wbr 5095  cfv 6488  topGenctg 17345  Fnecfne 36403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-topgen 17351  df-fne 36404
This theorem is referenced by:  fnessex  36413  fneuni  36414  fnemeet2  36434  fnejoin2  36436
  Copyright terms: Public domain W3C validator