| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnessex | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is finer than 𝐴 and 𝑆 is an element of 𝐴, every point in 𝑆 is an element of a subset of 𝑆 which is in 𝐵. (Contributed by Jeff Hankins, 28-Sep-2009.) |
| Ref | Expression |
|---|---|
| fnessex | ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝑆) → ∃𝑥 ∈ 𝐵 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnetg 36333 | . . 3 ⊢ (𝐴Fne𝐵 → 𝐴 ⊆ (topGen‘𝐵)) | |
| 2 | 1 | sselda 3946 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → 𝑆 ∈ (topGen‘𝐵)) |
| 3 | tg2 22852 | . 2 ⊢ ((𝑆 ∈ (topGen‘𝐵) ∧ 𝑃 ∈ 𝑆) → ∃𝑥 ∈ 𝐵 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑆)) | |
| 4 | 2, 3 | stoic3 1776 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝑆) → ∃𝑥 ∈ 𝐵 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 topGenctg 17400 Fnecfne 36324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topgen 17406 df-fne 36325 |
| This theorem is referenced by: fneint 36336 fnessref 36345 |
| Copyright terms: Public domain | W3C validator |