Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnessex Structured version   Visualization version   GIF version

Theorem fnessex 36328
Description: If 𝐵 is finer than 𝐴 and 𝑆 is an element of 𝐴, every point in 𝑆 is an element of a subset of 𝑆 which is in 𝐵. (Contributed by Jeff Hankins, 28-Sep-2009.)
Assertion
Ref Expression
fnessex ((𝐴Fne𝐵𝑆𝐴𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑆

Proof of Theorem fnessex
StepHypRef Expression
1 fnetg 36327 . . 3 (𝐴Fne𝐵𝐴 ⊆ (topGen‘𝐵))
21sselda 3943 . 2 ((𝐴Fne𝐵𝑆𝐴) → 𝑆 ∈ (topGen‘𝐵))
3 tg2 22886 . 2 ((𝑆 ∈ (topGen‘𝐵) ∧ 𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
42, 3stoic3 1776 1 ((𝐴Fne𝐵𝑆𝐴𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wrex 3053  wss 3911   class class class wbr 5102  cfv 6499  topGenctg 17377  Fnecfne 36318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-topgen 17383  df-fne 36319
This theorem is referenced by:  fneint  36330  fnessref  36339
  Copyright terms: Public domain W3C validator