Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnessex Structured version   Visualization version   GIF version

Theorem fnessex 36312
Description: If 𝐵 is finer than 𝐴 and 𝑆 is an element of 𝐴, every point in 𝑆 is an element of a subset of 𝑆 which is in 𝐵. (Contributed by Jeff Hankins, 28-Sep-2009.)
Assertion
Ref Expression
fnessex ((𝐴Fne𝐵𝑆𝐴𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑆

Proof of Theorem fnessex
StepHypRef Expression
1 fnetg 36311 . . 3 (𝐴Fne𝐵𝐴 ⊆ (topGen‘𝐵))
21sselda 4008 . 2 ((𝐴Fne𝐵𝑆𝐴) → 𝑆 ∈ (topGen‘𝐵))
3 tg2 22993 . 2 ((𝑆 ∈ (topGen‘𝐵) ∧ 𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
42, 3stoic3 1774 1 ((𝐴Fne𝐵𝑆𝐴𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  wrex 3076  wss 3976   class class class wbr 5166  cfv 6573  topGenctg 17497  Fnecfne 36302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-topgen 17503  df-fne 36303
This theorem is referenced by:  fneint  36314  fnessref  36323
  Copyright terms: Public domain W3C validator