| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnessex | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is finer than 𝐴 and 𝑆 is an element of 𝐴, every point in 𝑆 is an element of a subset of 𝑆 which is in 𝐵. (Contributed by Jeff Hankins, 28-Sep-2009.) |
| Ref | Expression |
|---|---|
| fnessex | ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝑆) → ∃𝑥 ∈ 𝐵 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnetg 36358 | . . 3 ⊢ (𝐴Fne𝐵 → 𝐴 ⊆ (topGen‘𝐵)) | |
| 2 | 1 | sselda 3932 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → 𝑆 ∈ (topGen‘𝐵)) |
| 3 | tg2 22873 | . 2 ⊢ ((𝑆 ∈ (topGen‘𝐵) ∧ 𝑃 ∈ 𝑆) → ∃𝑥 ∈ 𝐵 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑆)) | |
| 4 | 2, 3 | stoic3 1777 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴 ∧ 𝑃 ∈ 𝑆) → ∃𝑥 ∈ 𝐵 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2110 ∃wrex 3054 ⊆ wss 3900 class class class wbr 5089 ‘cfv 6477 topGenctg 17333 Fnecfne 36349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6433 df-fun 6479 df-fv 6485 df-topgen 17339 df-fne 36350 |
| This theorem is referenced by: fneint 36361 fnessref 36370 |
| Copyright terms: Public domain | W3C validator |