Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnessex Structured version   Visualization version   GIF version

Theorem fnessex 36397
Description: If 𝐵 is finer than 𝐴 and 𝑆 is an element of 𝐴, every point in 𝑆 is an element of a subset of 𝑆 which is in 𝐵. (Contributed by Jeff Hankins, 28-Sep-2009.)
Assertion
Ref Expression
fnessex ((𝐴Fne𝐵𝑆𝐴𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑆

Proof of Theorem fnessex
StepHypRef Expression
1 fnetg 36396 . . 3 (𝐴Fne𝐵𝐴 ⊆ (topGen‘𝐵))
21sselda 3929 . 2 ((𝐴Fne𝐵𝑆𝐴) → 𝑆 ∈ (topGen‘𝐵))
3 tg2 22886 . 2 ((𝑆 ∈ (topGen‘𝐵) ∧ 𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
42, 3stoic3 1777 1 ((𝐴Fne𝐵𝑆𝐴𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  wrex 3056  wss 3897   class class class wbr 5093  cfv 6487  topGenctg 17347  Fnecfne 36387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6443  df-fun 6489  df-fv 6495  df-topgen 17353  df-fne 36388
This theorem is referenced by:  fneint  36399  fnessref  36408
  Copyright terms: Public domain W3C validator