Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnessex Structured version   Visualization version   GIF version

Theorem fnessex 36359
Description: If 𝐵 is finer than 𝐴 and 𝑆 is an element of 𝐴, every point in 𝑆 is an element of a subset of 𝑆 which is in 𝐵. (Contributed by Jeff Hankins, 28-Sep-2009.)
Assertion
Ref Expression
fnessex ((𝐴Fne𝐵𝑆𝐴𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑃   𝑥,𝑆

Proof of Theorem fnessex
StepHypRef Expression
1 fnetg 36358 . . 3 (𝐴Fne𝐵𝐴 ⊆ (topGen‘𝐵))
21sselda 3932 . 2 ((𝐴Fne𝐵𝑆𝐴) → 𝑆 ∈ (topGen‘𝐵))
3 tg2 22873 . 2 ((𝑆 ∈ (topGen‘𝐵) ∧ 𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
42, 3stoic3 1777 1 ((𝐴Fne𝐵𝑆𝐴𝑃𝑆) → ∃𝑥𝐵 (𝑃𝑥𝑥𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2110  wrex 3054  wss 3900   class class class wbr 5089  cfv 6477  topGenctg 17333  Fnecfne 36349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-topgen 17339  df-fne 36350
This theorem is referenced by:  fneint  36361  fnessref  36370
  Copyright terms: Public domain W3C validator