MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tg2 Structured version   Visualization version   GIF version

Theorem tg2 21665
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg2 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem tg2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6690 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
2 eltg2b 21659 . . . 4 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴)))
3 eleq1 2839 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
43anbi1d 632 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥𝑥𝐴) ↔ (𝐶𝑥𝑥𝐴)))
54rexbidv 3221 . . . . 5 (𝑦 = 𝐶 → (∃𝑥𝐵 (𝑦𝑥𝑥𝐴) ↔ ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
65rspccv 3538 . . . 4 (∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
72, 6syl6bi 256 . . 3 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))))
81, 7mpcom 38 . 2 (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
98imp 410 1 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3070  wrex 3071  wss 3858  dom cdm 5524  cfv 6335  topGenctg 16769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-iota 6294  df-fun 6337  df-fv 6343  df-topgen 16775
This theorem is referenced by:  tgclb  21670  elcls3  21783  pnfnei  21920  mnfnei  21921  tgcnp  21953  tgcmp  22101  2ndcctbss  22155  2ndcdisj  22156  2ndcomap  22158  dis2ndc  22160  ptpjopn  22312  txlm  22348  flftg  22696  alexsublem  22744  alexsubALT  22751  tmdgsum2  22796  xrge0tsms  23535  xrge0tsmsd  30843  iccllysconn  32728  rellysconn  32729  fnessex  34084  ptrecube  35337  islptre  42627
  Copyright terms: Public domain W3C validator