MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tg2 Structured version   Visualization version   GIF version

Theorem tg2 22859
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
Assertion
Ref Expression
tg2 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem tg2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elfvdm 6898 . . 3 (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
2 eltg2b 22853 . . . 4 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴)))
3 eleq1 2817 . . . . . . 7 (𝑦 = 𝐶 → (𝑦𝑥𝐶𝑥))
43anbi1d 631 . . . . . 6 (𝑦 = 𝐶 → ((𝑦𝑥𝑥𝐴) ↔ (𝐶𝑥𝑥𝐴)))
54rexbidv 3158 . . . . 5 (𝑦 = 𝐶 → (∃𝑥𝐵 (𝑦𝑥𝑥𝐴) ↔ ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
65rspccv 3588 . . . 4 (∀𝑦𝐴𝑥𝐵 (𝑦𝑥𝑥𝐴) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
72, 6biimtrdi 253 . . 3 (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))))
81, 7mpcom 38 . 2 (𝐴 ∈ (topGen‘𝐵) → (𝐶𝐴 → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴)))
98imp 406 1 ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶𝐴) → ∃𝑥𝐵 (𝐶𝑥𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  dom cdm 5641  cfv 6514  topGenctg 17407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-topgen 17413
This theorem is referenced by:  tgclb  22864  elcls3  22977  pnfnei  23114  mnfnei  23115  tgcnp  23147  tgcmp  23295  2ndcctbss  23349  2ndcdisj  23350  2ndcomap  23352  dis2ndc  23354  ptpjopn  23506  txlm  23542  flftg  23890  alexsublem  23938  alexsubALT  23945  tmdgsum2  23990  xrge0tsms  24730  xrge0tsmsd  33009  iccllysconn  35244  rellysconn  35245  fnessex  36341  ptrecube  37621  islptre  45624
  Copyright terms: Public domain W3C validator