Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tg2 | Structured version Visualization version GIF version |
Description: Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.) |
Ref | Expression |
---|---|
tg2 | ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6845 | . . 3 ⊢ (𝐴 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | |
2 | eltg2b 22189 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) ↔ ∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) | |
3 | eleq1 2824 | . . . . . . 7 ⊢ (𝑦 = 𝐶 → (𝑦 ∈ 𝑥 ↔ 𝐶 ∈ 𝑥)) | |
4 | 3 | anbi1d 630 | . . . . . 6 ⊢ (𝑦 = 𝐶 → ((𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
5 | 4 | rexbidv 3171 | . . . . 5 ⊢ (𝑦 = 𝐶 → (∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) ↔ ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
6 | 5 | rspccv 3566 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ∃𝑥 ∈ 𝐵 (𝑦 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
7 | 2, 6 | syl6bi 252 | . . 3 ⊢ (𝐵 ∈ dom topGen → (𝐴 ∈ (topGen‘𝐵) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)))) |
8 | 1, 7 | mpcom 38 | . 2 ⊢ (𝐴 ∈ (topGen‘𝐵) → (𝐶 ∈ 𝐴 → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴))) |
9 | 8 | imp 407 | 1 ⊢ ((𝐴 ∈ (topGen‘𝐵) ∧ 𝐶 ∈ 𝐴) → ∃𝑥 ∈ 𝐵 (𝐶 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 ⊆ wss 3896 dom cdm 5607 ‘cfv 6465 topGenctg 17222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-iota 6417 df-fun 6467 df-fv 6473 df-topgen 17228 |
This theorem is referenced by: tgclb 22200 elcls3 22314 pnfnei 22451 mnfnei 22452 tgcnp 22484 tgcmp 22632 2ndcctbss 22686 2ndcdisj 22687 2ndcomap 22689 dis2ndc 22691 ptpjopn 22843 txlm 22879 flftg 23227 alexsublem 23275 alexsubALT 23282 tmdgsum2 23327 xrge0tsms 24077 xrge0tsmsd 31448 iccllysconn 33347 rellysconn 33348 fnessex 34605 ptrecube 35854 islptre 43415 |
Copyright terms: Public domain | W3C validator |