Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fneuni Structured version   Visualization version   GIF version

Theorem fneuni 36365
Description: If 𝐵 is finer than 𝐴, every element of 𝐴 is a union of elements of 𝐵. (Contributed by Jeff Hankins, 11-Oct-2009.)
Assertion
Ref Expression
fneuni ((𝐴Fne𝐵𝑆𝐴) → ∃𝑥(𝑥𝐵𝑆 = 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑆

Proof of Theorem fneuni
StepHypRef Expression
1 fnetg 36363 . . 3 (𝐴Fne𝐵𝐴 ⊆ (topGen‘𝐵))
21sselda 3958 . 2 ((𝐴Fne𝐵𝑆𝐴) → 𝑆 ∈ (topGen‘𝐵))
3 elfvdm 6913 . . . 4 (𝑆 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen)
4 eltg3 22900 . . . 4 (𝐵 ∈ dom topGen → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝑆 = 𝑥)))
53, 4syl 17 . . 3 (𝑆 ∈ (topGen‘𝐵) → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥𝐵𝑆 = 𝑥)))
65ibi 267 . 2 (𝑆 ∈ (topGen‘𝐵) → ∃𝑥(𝑥𝐵𝑆 = 𝑥))
72, 6syl 17 1 ((𝐴Fne𝐵𝑆𝐴) → ∃𝑥(𝑥𝐵𝑆 = 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wss 3926   cuni 4883   class class class wbr 5119  dom cdm 5654  cfv 6531  topGenctg 17451  Fnecfne 36354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-topgen 17457  df-fne 36355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator