| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fneuni | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is finer than 𝐴, every element of 𝐴 is a union of elements of 𝐵. (Contributed by Jeff Hankins, 11-Oct-2009.) |
| Ref | Expression |
|---|---|
| fneuni | ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnetg 36318 | . . 3 ⊢ (𝐴Fne𝐵 → 𝐴 ⊆ (topGen‘𝐵)) | |
| 2 | 1 | sselda 3937 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → 𝑆 ∈ (topGen‘𝐵)) |
| 3 | elfvdm 6861 | . . . 4 ⊢ (𝑆 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | |
| 4 | eltg3 22865 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑆 ∈ (topGen‘𝐵) → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥))) |
| 6 | 5 | ibi 267 | . 2 ⊢ (𝑆 ∈ (topGen‘𝐵) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
| 7 | 2, 6 | syl 17 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 topGenctg 17359 Fnecfne 36309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-topgen 17365 df-fne 36310 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |