Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneuni | Structured version Visualization version GIF version |
Description: If 𝐵 is finer than 𝐴, every element of 𝐴 is a union of elements of 𝐵. (Contributed by Jeff Hankins, 11-Oct-2009.) |
Ref | Expression |
---|---|
fneuni | ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnetg 34534 | . . 3 ⊢ (𝐴Fne𝐵 → 𝐴 ⊆ (topGen‘𝐵)) | |
2 | 1 | sselda 3921 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → 𝑆 ∈ (topGen‘𝐵)) |
3 | elfvdm 6806 | . . . 4 ⊢ (𝑆 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | |
4 | eltg3 22112 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥))) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑆 ∈ (topGen‘𝐵) → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥))) |
6 | 5 | ibi 266 | . 2 ⊢ (𝑆 ∈ (topGen‘𝐵) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
7 | 2, 6 | syl 17 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 class class class wbr 5074 dom cdm 5589 ‘cfv 6433 topGenctg 17148 Fnecfne 34525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-topgen 17154 df-fne 34526 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |