![]() |
Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fneuni | Structured version Visualization version GIF version |
Description: If π΅ is finer than π΄, every element of π΄ is a union of elements of π΅. (Contributed by Jeff Hankins, 11-Oct-2009.) |
Ref | Expression |
---|---|
fneuni | β’ ((π΄Fneπ΅ β§ π β π΄) β βπ₯(π₯ β π΅ β§ π = βͺ π₯)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnetg 35829 | . . 3 β’ (π΄Fneπ΅ β π΄ β (topGenβπ΅)) | |
2 | 1 | sselda 3980 | . 2 β’ ((π΄Fneπ΅ β§ π β π΄) β π β (topGenβπ΅)) |
3 | elfvdm 6934 | . . . 4 β’ (π β (topGenβπ΅) β π΅ β dom topGen) | |
4 | eltg3 22878 | . . . 4 β’ (π΅ β dom topGen β (π β (topGenβπ΅) β βπ₯(π₯ β π΅ β§ π = βͺ π₯))) | |
5 | 3, 4 | syl 17 | . . 3 β’ (π β (topGenβπ΅) β (π β (topGenβπ΅) β βπ₯(π₯ β π΅ β§ π = βͺ π₯))) |
6 | 5 | ibi 267 | . 2 β’ (π β (topGenβπ΅) β βπ₯(π₯ β π΅ β§ π = βͺ π₯)) |
7 | 2, 6 | syl 17 | 1 β’ ((π΄Fneπ΅ β§ π β π΄) β βπ₯(π₯ β π΅ β§ π = βͺ π₯)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 βwex 1774 β wcel 2099 β wss 3947 βͺ cuni 4908 class class class wbr 5148 dom cdm 5678 βcfv 6548 topGenctg 17419 Fnecfne 35820 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-topgen 17425 df-fne 35821 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |