| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fneuni | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is finer than 𝐴, every element of 𝐴 is a union of elements of 𝐵. (Contributed by Jeff Hankins, 11-Oct-2009.) |
| Ref | Expression |
|---|---|
| fneuni | ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnetg 36340 | . . 3 ⊢ (𝐴Fne𝐵 → 𝐴 ⊆ (topGen‘𝐵)) | |
| 2 | 1 | sselda 3949 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → 𝑆 ∈ (topGen‘𝐵)) |
| 3 | elfvdm 6898 | . . . 4 ⊢ (𝑆 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | |
| 4 | eltg3 22856 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑆 ∈ (topGen‘𝐵) → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥))) |
| 6 | 5 | ibi 267 | . 2 ⊢ (𝑆 ∈ (topGen‘𝐵) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
| 7 | 2, 6 | syl 17 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 topGenctg 17407 Fnecfne 36331 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-topgen 17413 df-fne 36332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |