| Mathbox for Jeff Hankins |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fneuni | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is finer than 𝐴, every element of 𝐴 is a union of elements of 𝐵. (Contributed by Jeff Hankins, 11-Oct-2009.) |
| Ref | Expression |
|---|---|
| fneuni | ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnetg 36363 | . . 3 ⊢ (𝐴Fne𝐵 → 𝐴 ⊆ (topGen‘𝐵)) | |
| 2 | 1 | sselda 3958 | . 2 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → 𝑆 ∈ (topGen‘𝐵)) |
| 3 | elfvdm 6913 | . . . 4 ⊢ (𝑆 ∈ (topGen‘𝐵) → 𝐵 ∈ dom topGen) | |
| 4 | eltg3 22900 | . . . 4 ⊢ (𝐵 ∈ dom topGen → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥))) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑆 ∈ (topGen‘𝐵) → (𝑆 ∈ (topGen‘𝐵) ↔ ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥))) |
| 6 | 5 | ibi 267 | . 2 ⊢ (𝑆 ∈ (topGen‘𝐵) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
| 7 | 2, 6 | syl 17 | 1 ⊢ ((𝐴Fne𝐵 ∧ 𝑆 ∈ 𝐴) → ∃𝑥(𝑥 ⊆ 𝐵 ∧ 𝑆 = ∪ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 class class class wbr 5119 dom cdm 5654 ‘cfv 6531 topGenctg 17451 Fnecfne 36354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-topgen 17457 df-fne 36355 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |