| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnimapr | Structured version Visualization version GIF version | ||
| Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| fnimapr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnfv 6958 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) | |
| 2 | 1 | 3adant3 1132 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| 3 | fnsnfv 6958 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) | |
| 4 | 3 | 3adant2 1131 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) |
| 5 | 2, 4 | uneq12d 4144 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))) |
| 6 | 5 | eqcomd 2741 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)})) |
| 7 | df-pr 4604 | . . . 4 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
| 8 | 7 | imaeq2i 6045 | . . 3 ⊢ (𝐹 “ {𝐵, 𝐶}) = (𝐹 “ ({𝐵} ∪ {𝐶})) |
| 9 | imaundi 6138 | . . 3 ⊢ (𝐹 “ ({𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) | |
| 10 | 8, 9 | eqtri 2758 | . 2 ⊢ (𝐹 “ {𝐵, 𝐶}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) |
| 11 | df-pr 4604 | . 2 ⊢ {(𝐹‘𝐵), (𝐹‘𝐶)} = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) | |
| 12 | 6, 10, 11 | 3eqtr4g 2795 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 {csn 4601 {cpr 4603 “ cima 5657 Fn wfn 6526 ‘cfv 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-fv 6539 |
| This theorem is referenced by: fnimatpd 6963 fvinim0ffz 13802 mrcun 17634 negs1s 27985 dfpth2 29711 s2rnOLD 32919 poimirlem1 37645 poimirlem9 37653 imarnf1pr 47311 uhgrimprop 47905 isuspgrimlem 47908 upgrimwlklem5 47914 upgrimpths 47922 clnbgrgrimlem 47946 clnbgrgrim 47947 grimgrtri 47961 isubgr3stgrlem4 47981 isubgr3stgrlem7 47984 grlimgrtrilem2 48007 |
| Copyright terms: Public domain | W3C validator |