| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnimapr | Structured version Visualization version GIF version | ||
| Description: The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.) |
| Ref | Expression |
|---|---|
| fnimapr | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnsnfv 6988 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) | |
| 2 | 1 | 3adant3 1133 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐵)} = (𝐹 “ {𝐵})) |
| 3 | fnsnfv 6988 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) | |
| 4 | 3 | 3adant2 1132 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → {(𝐹‘𝐶)} = (𝐹 “ {𝐶})) |
| 5 | 2, 4 | uneq12d 4169 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶}))) |
| 6 | 5 | eqcomd 2743 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)})) |
| 7 | df-pr 4629 | . . . 4 ⊢ {𝐵, 𝐶} = ({𝐵} ∪ {𝐶}) | |
| 8 | 7 | imaeq2i 6076 | . . 3 ⊢ (𝐹 “ {𝐵, 𝐶}) = (𝐹 “ ({𝐵} ∪ {𝐶})) |
| 9 | imaundi 6169 | . . 3 ⊢ (𝐹 “ ({𝐵} ∪ {𝐶})) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) | |
| 10 | 8, 9 | eqtri 2765 | . 2 ⊢ (𝐹 “ {𝐵, 𝐶}) = ((𝐹 “ {𝐵}) ∪ (𝐹 “ {𝐶})) |
| 11 | df-pr 4629 | . 2 ⊢ {(𝐹‘𝐵), (𝐹‘𝐶)} = ({(𝐹‘𝐵)} ∪ {(𝐹‘𝐶)}) | |
| 12 | 6, 10, 11 | 3eqtr4g 2802 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹‘𝐵), (𝐹‘𝐶)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∪ cun 3949 {csn 4626 {cpr 4628 “ cima 5688 Fn wfn 6556 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 |
| This theorem is referenced by: fnimatpd 6993 fvinim0ffz 13825 mrcun 17665 negs1s 28059 dfpth2 29749 s2rnOLD 32928 poimirlem1 37628 poimirlem9 37636 imarnf1pr 47294 uspgrimprop 47873 isuspgrimlem 47874 clnbgrgrimlem 47901 clnbgrgrim 47902 grimgrtri 47916 isubgr3stgrlem4 47936 isubgr3stgrlem7 47939 grlimgrtrilem2 47962 |
| Copyright terms: Public domain | W3C validator |