MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniniseg2 Structured version   Visualization version   GIF version

Theorem fniniseg2 6995
Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fniniseg2 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fniniseg2
StepHypRef Expression
1 fncnvima2 6994 . 2 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ {𝐵}})
2 fvex 6835 . . . 4 (𝐹𝑥) ∈ V
32elsn 4588 . . 3 ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵)
43rabbii 3400 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ∈ {𝐵}} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵}
51, 4eqtrdi 2782 1 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {crab 3395  {csn 4573  ccnv 5613  cima 5617   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  idomrootle  26105  qusker  33314  ply1dg1rt  33543  ply1mulrtss  33545  ply1annidllem  33714  algextdeglem6  33735  2sqr3minply  33793  cos9thpiminply  33801  aks6d1c6isolem3  42217  proot1hash  43236
  Copyright terms: Public domain W3C validator