MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fniniseg2 Structured version   Visualization version   GIF version

Theorem fniniseg2 7064
Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fniniseg2 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝑥,𝐵

Proof of Theorem fniniseg2
StepHypRef Expression
1 fncnvima2 7063 . 2 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) ∈ {𝐵}})
2 fvex 6903 . . . 4 (𝐹𝑥) ∈ V
32elsn 4637 . . 3 ((𝐹𝑥) ∈ {𝐵} ↔ (𝐹𝑥) = 𝐵)
43rabbii 3425 . 2 {𝑥𝐴 ∣ (𝐹𝑥) ∈ {𝐵}} = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵}
51, 4eqtrdi 2781 1 (𝐹 Fn 𝐴 → (𝐹 “ {𝐵}) = {𝑥𝐴 ∣ (𝐹𝑥) = 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {crab 3419  {csn 4622  ccnv 5669  cima 5673   Fn wfn 6536  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2166  ax-ext 2696  ax-sep 5292  ax-nul 5299  ax-pr 5421
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4317  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6493  df-fun 6543  df-fn 6544  df-fv 6549
This theorem is referenced by:  idomrootle  26123  qusker  33081  ply1annidllem  33401  algextdeglem6  33419  aks6d1c6isolem3  41676  proot1hash  42660
  Copyright terms: Public domain W3C validator