![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fniniseg2 | Structured version Visualization version GIF version |
Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fniniseg2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncnvima2 7094 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ {𝐵}}) | |
2 | fvex 6933 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
3 | 2 | elsn 4663 | . . 3 ⊢ ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵) |
4 | 3 | rabbii 3449 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ {𝐵}} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵} |
5 | 1, 4 | eqtrdi 2796 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 {csn 4648 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: idomrootle 26232 qusker 33342 ply1dg1rt 33569 ply1mulrtss 33571 ply1annidllem 33694 algextdeglem6 33713 2sqr3minply 33738 aks6d1c6isolem3 42133 proot1hash 43156 |
Copyright terms: Public domain | W3C validator |