![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fniniseg2 | Structured version Visualization version GIF version |
Description: Inverse point images under functions expressed as abstractions. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fniniseg2 | ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fncnvima2 7081 | . 2 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ {𝐵}}) | |
2 | fvex 6920 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
3 | 2 | elsn 4646 | . . 3 ⊢ ((𝐹‘𝑥) ∈ {𝐵} ↔ (𝐹‘𝑥) = 𝐵) |
4 | 3 | rabbii 3439 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) ∈ {𝐵}} = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵} |
5 | 1, 4 | eqtrdi 2791 | 1 ⊢ (𝐹 Fn 𝐴 → (◡𝐹 “ {𝐵}) = {𝑥 ∈ 𝐴 ∣ (𝐹‘𝑥) = 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {crab 3433 {csn 4631 ◡ccnv 5688 “ cima 5692 Fn wfn 6558 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-fv 6571 |
This theorem is referenced by: idomrootle 26227 qusker 33357 ply1dg1rt 33584 ply1mulrtss 33586 ply1annidllem 33709 algextdeglem6 33728 2sqr3minply 33753 aks6d1c6isolem3 42158 proot1hash 43184 |
Copyright terms: Public domain | W3C validator |