Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1annidllem Structured version   Visualization version   GIF version

Theorem ply1annidllem 33709
Description: Write the set 𝑄 of polynomials annihilating an element 𝐴 as the kernel of the ring homomorphism 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.)
Hypotheses
Ref Expression
ply1annidl.o 𝑂 = (𝑅 evalSub1 𝑆)
ply1annidl.p 𝑃 = (Poly1‘(𝑅s 𝑆))
ply1annidl.b 𝐵 = (Base‘𝑅)
ply1annidl.r (𝜑𝑅 ∈ CRing)
ply1annidl.s (𝜑𝑆 ∈ (SubRing‘𝑅))
ply1annidl.a (𝜑𝐴𝐵)
ply1annidl.0 0 = (0g𝑅)
ply1annidl.q 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
ply1annidllem.f 𝐹 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
Assertion
Ref Expression
ply1annidllem (𝜑𝑄 = (𝐹 “ { 0 }))
Distinct variable groups:   0 ,𝑞   𝐴,𝑝,𝑞   𝐵,𝑝   𝐹,𝑞   𝑂,𝑝,𝑞   𝑃,𝑝,𝑞   𝑅,𝑝   𝑆,𝑝   𝜑,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑞)   𝑄(𝑞,𝑝)   𝑅(𝑞)   𝑆(𝑞)   𝐹(𝑝)   0 (𝑝)

Proof of Theorem ply1annidllem
StepHypRef Expression
1 ply1annidl.q . 2 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 }
2 nfv 1912 . . . . . 6 𝑝𝜑
3 fvexd 6922 . . . . . 6 ((𝜑𝑝 ∈ (Base‘𝑃)) → ((𝑂𝑝)‘𝐴) ∈ V)
4 ply1annidllem.f . . . . . 6 𝐹 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂𝑝)‘𝐴))
52, 3, 4fnmptd 6710 . . . . 5 (𝜑𝐹 Fn (Base‘𝑃))
6 ply1annidl.o . . . . . . . 8 𝑂 = (𝑅 evalSub1 𝑆)
7 ply1annidl.p . . . . . . . 8 𝑃 = (Poly1‘(𝑅s 𝑆))
8 eqid 2735 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
9 ply1annidl.r . . . . . . . 8 (𝜑𝑅 ∈ CRing)
10 ply1annidl.s . . . . . . . 8 (𝜑𝑆 ∈ (SubRing‘𝑅))
116, 7, 8, 9, 10evls1fn 33566 . . . . . . 7 (𝜑𝑂 Fn (Base‘𝑃))
1211fndmd 6674 . . . . . 6 (𝜑 → dom 𝑂 = (Base‘𝑃))
1312fneq2d 6663 . . . . 5 (𝜑 → (𝐹 Fn dom 𝑂𝐹 Fn (Base‘𝑃)))
145, 13mpbird 257 . . . 4 (𝜑𝐹 Fn dom 𝑂)
15 fniniseg2 7082 . . . 4 (𝐹 Fn dom 𝑂 → (𝐹 “ { 0 }) = {𝑞 ∈ dom 𝑂 ∣ (𝐹𝑞) = 0 })
1614, 15syl 17 . . 3 (𝜑 → (𝐹 “ { 0 }) = {𝑞 ∈ dom 𝑂 ∣ (𝐹𝑞) = 0 })
17 fveq2 6907 . . . . . . 7 (𝑝 = 𝑞 → (𝑂𝑝) = (𝑂𝑞))
1817fveq1d 6909 . . . . . 6 (𝑝 = 𝑞 → ((𝑂𝑝)‘𝐴) = ((𝑂𝑞)‘𝐴))
1912eleq2d 2825 . . . . . . 7 (𝜑 → (𝑞 ∈ dom 𝑂𝑞 ∈ (Base‘𝑃)))
2019biimpa 476 . . . . . 6 ((𝜑𝑞 ∈ dom 𝑂) → 𝑞 ∈ (Base‘𝑃))
21 fvexd 6922 . . . . . 6 ((𝜑𝑞 ∈ dom 𝑂) → ((𝑂𝑞)‘𝐴) ∈ V)
224, 18, 20, 21fvmptd3 7039 . . . . 5 ((𝜑𝑞 ∈ dom 𝑂) → (𝐹𝑞) = ((𝑂𝑞)‘𝐴))
2322eqeq1d 2737 . . . 4 ((𝜑𝑞 ∈ dom 𝑂) → ((𝐹𝑞) = 0 ↔ ((𝑂𝑞)‘𝐴) = 0 ))
2423rabbidva 3440 . . 3 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ (𝐹𝑞) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 })
2516, 24eqtr2d 2776 . 2 (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂𝑞)‘𝐴) = 0 } = (𝐹 “ { 0 }))
261, 25eqtrid 2787 1 (𝜑𝑄 = (𝐹 “ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  {csn 4631  cmpt 5231  ccnv 5688  dom cdm 5689  cima 5692   Fn wfn 6558  cfv 6563  (class class class)co 7431  Basecbs 17245  s cress 17274  0gc0g 17486  CRingccrg 20252  SubRingcsubrg 20586  Poly1cpl1 22194   evalSub1 ces1 22333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-srg 20205  df-ring 20253  df-cring 20254  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-assa 21891  df-asp 21892  df-ascl 21893  df-psr 21947  df-mvr 21948  df-mpl 21949  df-opsr 21951  df-evls 22116  df-psr1 22197  df-ply1 22199  df-evls1 22335
This theorem is referenced by:  ply1annidl  33710  ply1annprmidl  33715  algextdeglem4  33726  algextdeglem5  33727
  Copyright terms: Public domain W3C validator