| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ply1annidllem | Structured version Visualization version GIF version | ||
| Description: Write the set 𝑄 of polynomials annihilating an element 𝐴 as the kernel of the ring homomorphism 𝐹 mapping polynomials 𝑝 to their subring evaluation at a given point 𝐴. (Contributed by Thierry Arnoux, 9-Feb-2025.) |
| Ref | Expression |
|---|---|
| ply1annidl.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| ply1annidl.p | ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) |
| ply1annidl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ply1annidl.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| ply1annidl.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| ply1annidl.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| ply1annidl.0 | ⊢ 0 = (0g‘𝑅) |
| ply1annidl.q | ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } |
| ply1annidllem.f | ⊢ 𝐹 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) |
| Ref | Expression |
|---|---|
| ply1annidllem | ⊢ (𝜑 → 𝑄 = (◡𝐹 “ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ply1annidl.q | . 2 ⊢ 𝑄 = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } | |
| 2 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑝𝜑 | |
| 3 | fvexd 6832 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → ((𝑂‘𝑝)‘𝐴) ∈ V) | |
| 4 | ply1annidllem.f | . . . . . 6 ⊢ 𝐹 = (𝑝 ∈ (Base‘𝑃) ↦ ((𝑂‘𝑝)‘𝐴)) | |
| 5 | 2, 3, 4 | fnmptd 6617 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn (Base‘𝑃)) |
| 6 | ply1annidl.o | . . . . . . . 8 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 7 | ply1annidl.p | . . . . . . . 8 ⊢ 𝑃 = (Poly1‘(𝑅 ↾s 𝑆)) | |
| 8 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 9 | ply1annidl.r | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 10 | ply1annidl.s | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 11 | 6, 7, 8, 9, 10 | evls1fn 33515 | . . . . . . 7 ⊢ (𝜑 → 𝑂 Fn (Base‘𝑃)) |
| 12 | 11 | fndmd 6581 | . . . . . 6 ⊢ (𝜑 → dom 𝑂 = (Base‘𝑃)) |
| 13 | 12 | fneq2d 6570 | . . . . 5 ⊢ (𝜑 → (𝐹 Fn dom 𝑂 ↔ 𝐹 Fn (Base‘𝑃))) |
| 14 | 5, 13 | mpbird 257 | . . . 4 ⊢ (𝜑 → 𝐹 Fn dom 𝑂) |
| 15 | fniniseg2 6990 | . . . 4 ⊢ (𝐹 Fn dom 𝑂 → (◡𝐹 “ { 0 }) = {𝑞 ∈ dom 𝑂 ∣ (𝐹‘𝑞) = 0 }) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ { 0 }) = {𝑞 ∈ dom 𝑂 ∣ (𝐹‘𝑞) = 0 }) |
| 17 | fveq2 6817 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → (𝑂‘𝑝) = (𝑂‘𝑞)) | |
| 18 | 17 | fveq1d 6819 | . . . . . 6 ⊢ (𝑝 = 𝑞 → ((𝑂‘𝑝)‘𝐴) = ((𝑂‘𝑞)‘𝐴)) |
| 19 | 12 | eleq2d 2817 | . . . . . . 7 ⊢ (𝜑 → (𝑞 ∈ dom 𝑂 ↔ 𝑞 ∈ (Base‘𝑃))) |
| 20 | 19 | biimpa 476 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝑂) → 𝑞 ∈ (Base‘𝑃)) |
| 21 | fvexd 6832 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝑂) → ((𝑂‘𝑞)‘𝐴) ∈ V) | |
| 22 | 4, 18, 20, 21 | fvmptd3 6947 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝑂) → (𝐹‘𝑞) = ((𝑂‘𝑞)‘𝐴)) |
| 23 | 22 | eqeq1d 2733 | . . . 4 ⊢ ((𝜑 ∧ 𝑞 ∈ dom 𝑂) → ((𝐹‘𝑞) = 0 ↔ ((𝑂‘𝑞)‘𝐴) = 0 )) |
| 24 | 23 | rabbidva 3401 | . . 3 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ (𝐹‘𝑞) = 0 } = {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 }) |
| 25 | 16, 24 | eqtr2d 2767 | . 2 ⊢ (𝜑 → {𝑞 ∈ dom 𝑂 ∣ ((𝑂‘𝑞)‘𝐴) = 0 } = (◡𝐹 “ { 0 })) |
| 26 | 1, 25 | eqtrid 2778 | 1 ⊢ (𝜑 → 𝑄 = (◡𝐹 “ { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 {csn 4571 ↦ cmpt 5167 ◡ccnv 5610 dom cdm 5611 “ cima 5614 Fn wfn 6471 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 ↾s cress 17136 0gc0g 17338 CRingccrg 20147 SubRingcsubrg 20479 Poly1cpl1 22084 evalSub1 ces1 22223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-srg 20100 df-ring 20148 df-cring 20149 df-rhm 20385 df-subrng 20456 df-subrg 20480 df-lmod 20790 df-lss 20860 df-lsp 20900 df-assa 21785 df-asp 21786 df-ascl 21787 df-psr 21841 df-mvr 21842 df-mpl 21843 df-opsr 21845 df-evls 22004 df-psr1 22087 df-ply1 22089 df-evls1 22225 |
| This theorem is referenced by: ply1annidl 33707 ply1annprmidl 33712 algextdeglem4 33725 algextdeglem5 33726 |
| Copyright terms: Public domain | W3C validator |