![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c6isolem3 | Structured version Visualization version GIF version |
Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.) |
Ref | Expression |
---|---|
aks6d1c6isolem1.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
aks6d1c6isolem1.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
aks6d1c6isolem1.3 | ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
aks6d1c6isolem1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) |
aks6d1c6isolem1.5 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
aks6d1c6isolem3.1 | ⊢ 𝑆 = (RSpan‘ℤring) |
Ref | Expression |
---|---|
aks6d1c6isolem3 | ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 21483 | . . . 4 ⊢ ℤring ∈ Ring | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ℤring ∈ Ring) |
3 | aks6d1c6isolem1.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
4 | 3 | nnzd 12666 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
5 | zringbas 21487 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
6 | aks6d1c6isolem3.1 | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
7 | dvdsrzring 21495 | . . . 4 ⊢ ∥ = (∥r‘ℤring) | |
8 | 5, 6, 7 | rspsn 21366 | . . 3 ⊢ ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
9 | 2, 4, 8 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
10 | ovexd 7483 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
11 | aks6d1c6isolem1.4 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) | |
12 | 10, 11 | fmptd 7148 | . . . . 5 ⊢ (𝜑 → 𝐹:ℤ⟶V) |
13 | 12 | ffnd 6748 | . . . 4 ⊢ (𝜑 → 𝐹 Fn ℤ) |
14 | fniniseg2 7095 | . . . 4 ⊢ (𝐹 Fn ℤ → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) |
16 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
17 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
18 | 17 | oveq1d 7463 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
19 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) | |
20 | ovexd 7483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
21 | 16, 18, 19, 20 | fvmptd 7036 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝐹‘𝑧) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
22 | 21 | eqeq1d 2742 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)))) |
23 | aks6d1c6isolem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ CMnd) |
25 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐾 ∈ ℕ) |
26 | aks6d1c6isolem1.5 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | |
27 | 26 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
28 | aks6d1c6isolem1.3 | . . . . . . 7 ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} | |
29 | 24, 25, 27, 28, 19 | primrootspoweq0 42063 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
30 | 22, 29 | bitrd 279 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
31 | 30 | rabbidva 3450 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧}) |
32 | df-rab 3444 | . . . . . 6 ⊢ {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} | |
33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)}) |
34 | simpr 484 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) → 𝐾 ∥ 𝑧) | |
35 | dvdszrcl 16307 | . . . . . . . . . 10 ⊢ (𝐾 ∥ 𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ)) | |
36 | 35 | simprd 495 | . . . . . . . . 9 ⊢ (𝐾 ∥ 𝑧 → 𝑧 ∈ ℤ) |
37 | 36 | ancri 549 | . . . . . . . 8 ⊢ (𝐾 ∥ 𝑧 → (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)) |
38 | 34, 37 | impbii 209 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧) |
39 | 38 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧)) |
40 | 39 | abbidv 2811 | . . . . 5 ⊢ (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
41 | 33, 40 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
42 | 31, 41 | eqtrd 2780 | . . 3 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
43 | 15, 42 | eqtr2d 2781 | . 2 ⊢ (𝜑 → {𝑧 ∣ 𝐾 ∥ 𝑧} = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
44 | 9, 43 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 {crab 3443 Vcvv 3488 {csn 4648 class class class wbr 5166 ↦ cmpt 5249 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ℕcn 12293 ℤcz 12639 ∥ cdvds 16302 Basecbs 17258 ↾s cress 17287 +gcplusg 17311 0gc0g 17499 .gcmg 19107 CMndccmn 19822 Ringcrg 20260 RSpancrsp 21240 ℤringczring 21480 PrimRoots cprimroots 42048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 ax-mulf 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-ico 13413 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-dvds 16303 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-cring 20263 df-dvdsr 20383 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-rsp 21242 df-cnfld 21388 df-zring 21481 df-primroots 42049 |
This theorem is referenced by: aks6d1c6lem5 42134 |
Copyright terms: Public domain | W3C validator |