![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c6isolem3 | Structured version Visualization version GIF version |
Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.) |
Ref | Expression |
---|---|
aks6d1c6isolem1.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
aks6d1c6isolem1.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
aks6d1c6isolem1.3 | ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
aks6d1c6isolem1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) |
aks6d1c6isolem1.5 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
aks6d1c6isolem3.1 | ⊢ 𝑆 = (RSpan‘ℤring) |
Ref | Expression |
---|---|
aks6d1c6isolem3 | ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 21478 | . . . 4 ⊢ ℤring ∈ Ring | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ℤring ∈ Ring) |
3 | aks6d1c6isolem1.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
4 | 3 | nnzd 12638 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
5 | zringbas 21482 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
6 | aks6d1c6isolem3.1 | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
7 | dvdsrzring 21490 | . . . 4 ⊢ ∥ = (∥r‘ℤring) | |
8 | 5, 6, 7 | rspsn 21361 | . . 3 ⊢ ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
9 | 2, 4, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
10 | ovexd 7466 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
11 | aks6d1c6isolem1.4 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) | |
12 | 10, 11 | fmptd 7134 | . . . . 5 ⊢ (𝜑 → 𝐹:ℤ⟶V) |
13 | 12 | ffnd 6738 | . . . 4 ⊢ (𝜑 → 𝐹 Fn ℤ) |
14 | fniniseg2 7082 | . . . 4 ⊢ (𝐹 Fn ℤ → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) |
16 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
17 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
18 | 17 | oveq1d 7446 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
19 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) | |
20 | ovexd 7466 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
21 | 16, 18, 19, 20 | fvmptd 7023 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝐹‘𝑧) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
22 | 21 | eqeq1d 2737 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)))) |
23 | aks6d1c6isolem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ CMnd) |
25 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐾 ∈ ℕ) |
26 | aks6d1c6isolem1.5 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | |
27 | 26 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
28 | aks6d1c6isolem1.3 | . . . . . . 7 ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} | |
29 | 24, 25, 27, 28, 19 | primrootspoweq0 42088 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
30 | 22, 29 | bitrd 279 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
31 | 30 | rabbidva 3440 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧}) |
32 | df-rab 3434 | . . . . . 6 ⊢ {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} | |
33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)}) |
34 | simpr 484 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) → 𝐾 ∥ 𝑧) | |
35 | dvdszrcl 16292 | . . . . . . . . . 10 ⊢ (𝐾 ∥ 𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ)) | |
36 | 35 | simprd 495 | . . . . . . . . 9 ⊢ (𝐾 ∥ 𝑧 → 𝑧 ∈ ℤ) |
37 | 36 | ancri 549 | . . . . . . . 8 ⊢ (𝐾 ∥ 𝑧 → (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)) |
38 | 34, 37 | impbii 209 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧) |
39 | 38 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧)) |
40 | 39 | abbidv 2806 | . . . . 5 ⊢ (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
41 | 33, 40 | eqtrd 2775 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
42 | 31, 41 | eqtrd 2775 | . . 3 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
43 | 15, 42 | eqtr2d 2776 | . 2 ⊢ (𝜑 → {𝑧 ∣ 𝐾 ∥ 𝑧} = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
44 | 9, 43 | eqtrd 2775 | 1 ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 {crab 3433 Vcvv 3478 {csn 4631 class class class wbr 5148 ↦ cmpt 5231 ◡ccnv 5688 “ cima 5692 Fn wfn 6558 ‘cfv 6563 (class class class)co 7431 ℕcn 12264 ℤcz 12611 ∥ cdvds 16287 Basecbs 17245 ↾s cress 17274 +gcplusg 17298 0gc0g 17486 .gcmg 19098 CMndccmn 19813 Ringcrg 20251 RSpancrsp 21235 ℤringczring 21475 PrimRoots cprimroots 42073 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-rp 13033 df-ico 13390 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-dvds 16288 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-dvdsr 20374 df-subrng 20563 df-subrg 20587 df-lmod 20877 df-lss 20948 df-lsp 20988 df-sra 21190 df-rgmod 21191 df-rsp 21237 df-cnfld 21383 df-zring 21476 df-primroots 42074 |
This theorem is referenced by: aks6d1c6lem5 42159 |
Copyright terms: Public domain | W3C validator |