![]() |
Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c6isolem3 | Structured version Visualization version GIF version |
Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.) |
Ref | Expression |
---|---|
aks6d1c6isolem1.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
aks6d1c6isolem1.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
aks6d1c6isolem1.3 | ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
aks6d1c6isolem1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) |
aks6d1c6isolem1.5 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
aks6d1c6isolem3.1 | ⊢ 𝑆 = (RSpan‘ℤring) |
Ref | Expression |
---|---|
aks6d1c6isolem3 | ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 21439 | . . . 4 ⊢ ℤring ∈ Ring | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ℤring ∈ Ring) |
3 | aks6d1c6isolem1.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
4 | 3 | nnzd 12637 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
5 | zringbas 21443 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
6 | aks6d1c6isolem3.1 | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
7 | dvdsrzring 21451 | . . . 4 ⊢ ∥ = (∥r‘ℤring) | |
8 | 5, 6, 7 | rspsn 21322 | . . 3 ⊢ ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
9 | 2, 4, 8 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
10 | ovexd 7459 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
11 | aks6d1c6isolem1.4 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) | |
12 | 10, 11 | fmptd 7128 | . . . . 5 ⊢ (𝜑 → 𝐹:ℤ⟶V) |
13 | 12 | ffnd 6729 | . . . 4 ⊢ (𝜑 → 𝐹 Fn ℤ) |
14 | fniniseg2 7075 | . . . 4 ⊢ (𝐹 Fn ℤ → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) |
16 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
17 | simpr 483 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
18 | 17 | oveq1d 7439 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
19 | simpr 483 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) | |
20 | ovexd 7459 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
21 | 16, 18, 19, 20 | fvmptd 7016 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝐹‘𝑧) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
22 | 21 | eqeq1d 2728 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)))) |
23 | aks6d1c6isolem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
24 | 23 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ CMnd) |
25 | 3 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐾 ∈ ℕ) |
26 | aks6d1c6isolem1.5 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | |
27 | 26 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
28 | aks6d1c6isolem1.3 | . . . . . . 7 ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} | |
29 | 24, 25, 27, 28, 19 | primrootspoweq0 41804 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
30 | 22, 29 | bitrd 278 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
31 | 30 | rabbidva 3426 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧}) |
32 | df-rab 3420 | . . . . . 6 ⊢ {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} | |
33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)}) |
34 | simpr 483 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) → 𝐾 ∥ 𝑧) | |
35 | dvdszrcl 16261 | . . . . . . . . . 10 ⊢ (𝐾 ∥ 𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ)) | |
36 | 35 | simprd 494 | . . . . . . . . 9 ⊢ (𝐾 ∥ 𝑧 → 𝑧 ∈ ℤ) |
37 | 36 | ancri 548 | . . . . . . . 8 ⊢ (𝐾 ∥ 𝑧 → (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)) |
38 | 34, 37 | impbii 208 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧) |
39 | 38 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧)) |
40 | 39 | abbidv 2795 | . . . . 5 ⊢ (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
41 | 33, 40 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
42 | 31, 41 | eqtrd 2766 | . . 3 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
43 | 15, 42 | eqtr2d 2767 | . 2 ⊢ (𝜑 → {𝑧 ∣ 𝐾 ∥ 𝑧} = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
44 | 9, 43 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∃wrex 3060 {crab 3419 Vcvv 3462 {csn 4633 class class class wbr 5153 ↦ cmpt 5236 ◡ccnv 5681 “ cima 5685 Fn wfn 6549 ‘cfv 6554 (class class class)co 7424 ℕcn 12264 ℤcz 12610 ∥ cdvds 16256 Basecbs 17213 ↾s cress 17242 +gcplusg 17266 0gc0g 17454 .gcmg 19061 CMndccmn 19778 Ringcrg 20216 RSpancrsp 21196 ℤringczring 21436 PrimRoots cprimroots 41790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 ax-addf 11237 ax-mulf 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12611 df-dec 12730 df-uz 12875 df-rp 13029 df-ico 13384 df-fz 13539 df-fzo 13682 df-fl 13812 df-mod 13890 df-seq 14022 df-dvds 16257 df-struct 17149 df-sets 17166 df-slot 17184 df-ndx 17196 df-base 17214 df-ress 17243 df-plusg 17279 df-mulr 17280 df-starv 17281 df-sca 17282 df-vsca 17283 df-ip 17284 df-tset 17285 df-ple 17286 df-ds 17288 df-unif 17289 df-0g 17456 df-mgm 18633 df-sgrp 18712 df-mnd 18728 df-submnd 18774 df-grp 18931 df-minusg 18932 df-sbg 18933 df-mulg 19062 df-subg 19117 df-cmn 19780 df-abl 19781 df-mgp 20118 df-rng 20136 df-ur 20165 df-ring 20218 df-cring 20219 df-dvdsr 20339 df-subrng 20528 df-subrg 20553 df-lmod 20838 df-lss 20909 df-lsp 20949 df-sra 21151 df-rgmod 21152 df-rsp 21198 df-cnfld 21344 df-zring 21437 df-primroots 41791 |
This theorem is referenced by: aks6d1c6lem5 41875 |
Copyright terms: Public domain | W3C validator |