Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem3 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem3 42137
Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
aks6d1c6isolem3.1 𝑆 = (RSpan‘ℤring)
Assertion
Ref Expression
aks6d1c6isolem3 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑆(𝑥,𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zringring 21335 . . . 4 ring ∈ Ring
21a1i 11 . . 3 (𝜑 → ℤring ∈ Ring)
3 aks6d1c6isolem1.2 . . . 4 (𝜑𝐾 ∈ ℕ)
43nnzd 12532 . . 3 (𝜑𝐾 ∈ ℤ)
5 zringbas 21339 . . . 4 ℤ = (Base‘ℤring)
6 aks6d1c6isolem3.1 . . . 4 𝑆 = (RSpan‘ℤring)
7 dvdsrzring 21347 . . . 4 ∥ = (∥r‘ℤring)
85, 6, 7rspsn 21219 . . 3 ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
92, 4, 8syl2anc 584 . 2 (𝜑 → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
10 ovexd 7404 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ V)
11 aks6d1c6isolem1.4 . . . . . 6 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
1210, 11fmptd 7068 . . . . 5 (𝜑𝐹:ℤ⟶V)
1312ffnd 6671 . . . 4 (𝜑𝐹 Fn ℤ)
14 fniniseg2 7016 . . . 4 (𝐹 Fn ℤ → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1513, 14syl 17 . . 3 (𝜑 → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1611a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
17 simpr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
1817oveq1d 7384 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
19 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
20 ovexd 7404 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
2116, 18, 19, 20fvmptd 6957 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
2221eqeq1d 2731 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ (𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈))))
23 aks6d1c6isolem1.1 . . . . . . . 8 (𝜑𝑅 ∈ CMnd)
2423adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑅 ∈ CMnd)
253adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝐾 ∈ ℕ)
26 aks6d1c6isolem1.5 . . . . . . . 8 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
2726adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾))
28 aks6d1c6isolem1.3 . . . . . . 7 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
2924, 25, 27, 28, 19primrootspoweq0 42067 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3022, 29bitrd 279 . . . . 5 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3130rabbidva 3409 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾𝑧})
32 df-rab 3403 . . . . . 6 {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)}
3332a1i 11 . . . . 5 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)})
34 simpr 484 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) → 𝐾𝑧)
35 dvdszrcl 16203 . . . . . . . . . 10 (𝐾𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ))
3635simprd 495 . . . . . . . . 9 (𝐾𝑧𝑧 ∈ ℤ)
3736ancri 549 . . . . . . . 8 (𝐾𝑧 → (𝑧 ∈ ℤ ∧ 𝐾𝑧))
3834, 37impbii 209 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧)
3938a1i 11 . . . . . 6 (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧))
4039abbidv 2795 . . . . 5 (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)} = {𝑧𝐾𝑧})
4133, 40eqtrd 2764 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧𝐾𝑧})
4231, 41eqtrd 2764 . . 3 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧𝐾𝑧})
4315, 42eqtr2d 2765 . 2 (𝜑 → {𝑧𝐾𝑧} = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
449, 43eqtrd 2764 1 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3402  Vcvv 3444  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634   Fn wfn 6494  cfv 6499  (class class class)co 7369  cn 12162  cz 12505  cdvds 16198  Basecbs 17155  s cress 17176  +gcplusg 17196  0gc0g 17378  .gcmg 18975  CMndccmn 19686  Ringcrg 20118  RSpancrsp 21093  ringczring 21332   PrimRoots cprimroots 42052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-dvds 16199  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-dvdsr 20242  df-subrng 20431  df-subrg 20455  df-lmod 20744  df-lss 20814  df-lsp 20854  df-sra 21056  df-rgmod 21057  df-rsp 21095  df-cnfld 21241  df-zring 21333  df-primroots 42053
This theorem is referenced by:  aks6d1c6lem5  42138
  Copyright terms: Public domain W3C validator