| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c6isolem3 | Structured version Visualization version GIF version | ||
| Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c6isolem1.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| aks6d1c6isolem1.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| aks6d1c6isolem1.3 | ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
| aks6d1c6isolem1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| aks6d1c6isolem1.5 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| aks6d1c6isolem3.1 | ⊢ 𝑆 = (RSpan‘ℤring) |
| Ref | Expression |
|---|---|
| aks6d1c6isolem3 | ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring 21335 | . . . 4 ⊢ ℤring ∈ Ring | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ℤring ∈ Ring) |
| 3 | aks6d1c6isolem1.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 4 | 3 | nnzd 12532 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 5 | zringbas 21339 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 6 | aks6d1c6isolem3.1 | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 7 | dvdsrzring 21347 | . . . 4 ⊢ ∥ = (∥r‘ℤring) | |
| 8 | 5, 6, 7 | rspsn 21219 | . . 3 ⊢ ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 9 | 2, 4, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 10 | ovexd 7404 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
| 11 | aks6d1c6isolem1.4 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) | |
| 12 | 10, 11 | fmptd 7068 | . . . . 5 ⊢ (𝜑 → 𝐹:ℤ⟶V) |
| 13 | 12 | ffnd 6671 | . . . 4 ⊢ (𝜑 → 𝐹 Fn ℤ) |
| 14 | fniniseg2 7016 | . . . 4 ⊢ (𝐹 Fn ℤ → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) |
| 16 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 17 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
| 18 | 17 | oveq1d 7384 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 19 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) | |
| 20 | ovexd 7404 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
| 21 | 16, 18, 19, 20 | fvmptd 6957 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝐹‘𝑧) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 22 | 21 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)))) |
| 23 | aks6d1c6isolem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ CMnd) |
| 25 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐾 ∈ ℕ) |
| 26 | aks6d1c6isolem1.5 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | |
| 27 | 26 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| 28 | aks6d1c6isolem1.3 | . . . . . . 7 ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} | |
| 29 | 24, 25, 27, 28, 19 | primrootspoweq0 42067 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
| 30 | 22, 29 | bitrd 279 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
| 31 | 30 | rabbidva 3409 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧}) |
| 32 | df-rab 3403 | . . . . . 6 ⊢ {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)}) |
| 34 | simpr 484 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) → 𝐾 ∥ 𝑧) | |
| 35 | dvdszrcl 16203 | . . . . . . . . . 10 ⊢ (𝐾 ∥ 𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ)) | |
| 36 | 35 | simprd 495 | . . . . . . . . 9 ⊢ (𝐾 ∥ 𝑧 → 𝑧 ∈ ℤ) |
| 37 | 36 | ancri 549 | . . . . . . . 8 ⊢ (𝐾 ∥ 𝑧 → (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)) |
| 38 | 34, 37 | impbii 209 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧) |
| 39 | 38 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧)) |
| 40 | 39 | abbidv 2795 | . . . . 5 ⊢ (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 41 | 33, 40 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 42 | 31, 41 | eqtrd 2764 | . . 3 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 43 | 15, 42 | eqtr2d 2765 | . 2 ⊢ (𝜑 → {𝑧 ∣ 𝐾 ∥ 𝑧} = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
| 44 | 9, 43 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {crab 3402 Vcvv 3444 {csn 4585 class class class wbr 5102 ↦ cmpt 5183 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ‘cfv 6499 (class class class)co 7369 ℕcn 12162 ℤcz 12505 ∥ cdvds 16198 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 0gc0g 17378 .gcmg 18975 CMndccmn 19686 Ringcrg 20118 RSpancrsp 21093 ℤringczring 21332 PrimRoots cprimroots 42052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-ico 13288 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-dvds 16199 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-dvdsr 20242 df-subrng 20431 df-subrg 20455 df-lmod 20744 df-lss 20814 df-lsp 20854 df-sra 21056 df-rgmod 21057 df-rsp 21095 df-cnfld 21241 df-zring 21333 df-primroots 42053 |
| This theorem is referenced by: aks6d1c6lem5 42138 |
| Copyright terms: Public domain | W3C validator |