Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem3 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem3 42158
Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
aks6d1c6isolem3.1 𝑆 = (RSpan‘ℤring)
Assertion
Ref Expression
aks6d1c6isolem3 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑆(𝑥,𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zringring 21478 . . . 4 ring ∈ Ring
21a1i 11 . . 3 (𝜑 → ℤring ∈ Ring)
3 aks6d1c6isolem1.2 . . . 4 (𝜑𝐾 ∈ ℕ)
43nnzd 12638 . . 3 (𝜑𝐾 ∈ ℤ)
5 zringbas 21482 . . . 4 ℤ = (Base‘ℤring)
6 aks6d1c6isolem3.1 . . . 4 𝑆 = (RSpan‘ℤring)
7 dvdsrzring 21490 . . . 4 ∥ = (∥r‘ℤring)
85, 6, 7rspsn 21361 . . 3 ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
92, 4, 8syl2anc 584 . 2 (𝜑 → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
10 ovexd 7466 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ V)
11 aks6d1c6isolem1.4 . . . . . 6 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
1210, 11fmptd 7134 . . . . 5 (𝜑𝐹:ℤ⟶V)
1312ffnd 6738 . . . 4 (𝜑𝐹 Fn ℤ)
14 fniniseg2 7082 . . . 4 (𝐹 Fn ℤ → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1513, 14syl 17 . . 3 (𝜑 → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1611a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
17 simpr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
1817oveq1d 7446 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
19 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
20 ovexd 7466 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
2116, 18, 19, 20fvmptd 7023 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
2221eqeq1d 2737 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ (𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈))))
23 aks6d1c6isolem1.1 . . . . . . . 8 (𝜑𝑅 ∈ CMnd)
2423adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑅 ∈ CMnd)
253adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝐾 ∈ ℕ)
26 aks6d1c6isolem1.5 . . . . . . . 8 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
2726adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾))
28 aks6d1c6isolem1.3 . . . . . . 7 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
2924, 25, 27, 28, 19primrootspoweq0 42088 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3022, 29bitrd 279 . . . . 5 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3130rabbidva 3440 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾𝑧})
32 df-rab 3434 . . . . . 6 {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)}
3332a1i 11 . . . . 5 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)})
34 simpr 484 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) → 𝐾𝑧)
35 dvdszrcl 16292 . . . . . . . . . 10 (𝐾𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ))
3635simprd 495 . . . . . . . . 9 (𝐾𝑧𝑧 ∈ ℤ)
3736ancri 549 . . . . . . . 8 (𝐾𝑧 → (𝑧 ∈ ℤ ∧ 𝐾𝑧))
3834, 37impbii 209 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧)
3938a1i 11 . . . . . 6 (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧))
4039abbidv 2806 . . . . 5 (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)} = {𝑧𝐾𝑧})
4133, 40eqtrd 2775 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧𝐾𝑧})
4231, 41eqtrd 2775 . . 3 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧𝐾𝑧})
4315, 42eqtr2d 2776 . 2 (𝜑 → {𝑧𝐾𝑧} = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
449, 43eqtrd 2775 1 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wrex 3068  {crab 3433  Vcvv 3478  {csn 4631   class class class wbr 5148  cmpt 5231  ccnv 5688  cima 5692   Fn wfn 6558  cfv 6563  (class class class)co 7431  cn 12264  cz 12611  cdvds 16287  Basecbs 17245  s cress 17274  +gcplusg 17298  0gc0g 17486  .gcmg 19098  CMndccmn 19813  Ringcrg 20251  RSpancrsp 21235  ringczring 21475   PrimRoots cprimroots 42073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-ico 13390  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-dvds 16288  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-dvdsr 20374  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-rsp 21237  df-cnfld 21383  df-zring 21476  df-primroots 42074
This theorem is referenced by:  aks6d1c6lem5  42159
  Copyright terms: Public domain W3C validator