Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem3 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem3 42177
Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
aks6d1c6isolem3.1 𝑆 = (RSpan‘ℤring)
Assertion
Ref Expression
aks6d1c6isolem3 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑆(𝑥,𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zringring 21460 . . . 4 ring ∈ Ring
21a1i 11 . . 3 (𝜑 → ℤring ∈ Ring)
3 aks6d1c6isolem1.2 . . . 4 (𝜑𝐾 ∈ ℕ)
43nnzd 12640 . . 3 (𝜑𝐾 ∈ ℤ)
5 zringbas 21464 . . . 4 ℤ = (Base‘ℤring)
6 aks6d1c6isolem3.1 . . . 4 𝑆 = (RSpan‘ℤring)
7 dvdsrzring 21472 . . . 4 ∥ = (∥r‘ℤring)
85, 6, 7rspsn 21343 . . 3 ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
92, 4, 8syl2anc 584 . 2 (𝜑 → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
10 ovexd 7466 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ V)
11 aks6d1c6isolem1.4 . . . . . 6 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
1210, 11fmptd 7134 . . . . 5 (𝜑𝐹:ℤ⟶V)
1312ffnd 6737 . . . 4 (𝜑𝐹 Fn ℤ)
14 fniniseg2 7082 . . . 4 (𝐹 Fn ℤ → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1513, 14syl 17 . . 3 (𝜑 → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1611a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
17 simpr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
1817oveq1d 7446 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
19 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
20 ovexd 7466 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
2116, 18, 19, 20fvmptd 7023 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
2221eqeq1d 2739 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ (𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈))))
23 aks6d1c6isolem1.1 . . . . . . . 8 (𝜑𝑅 ∈ CMnd)
2423adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑅 ∈ CMnd)
253adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝐾 ∈ ℕ)
26 aks6d1c6isolem1.5 . . . . . . . 8 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
2726adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾))
28 aks6d1c6isolem1.3 . . . . . . 7 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
2924, 25, 27, 28, 19primrootspoweq0 42107 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3022, 29bitrd 279 . . . . 5 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3130rabbidva 3443 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾𝑧})
32 df-rab 3437 . . . . . 6 {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)}
3332a1i 11 . . . . 5 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)})
34 simpr 484 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) → 𝐾𝑧)
35 dvdszrcl 16295 . . . . . . . . . 10 (𝐾𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ))
3635simprd 495 . . . . . . . . 9 (𝐾𝑧𝑧 ∈ ℤ)
3736ancri 549 . . . . . . . 8 (𝐾𝑧 → (𝑧 ∈ ℤ ∧ 𝐾𝑧))
3834, 37impbii 209 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧)
3938a1i 11 . . . . . 6 (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧))
4039abbidv 2808 . . . . 5 (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)} = {𝑧𝐾𝑧})
4133, 40eqtrd 2777 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧𝐾𝑧})
4231, 41eqtrd 2777 . . 3 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧𝐾𝑧})
4315, 42eqtr2d 2778 . 2 (𝜑 → {𝑧𝐾𝑧} = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
449, 43eqtrd 2777 1 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {cab 2714  wrex 3070  {crab 3436  Vcvv 3480  {csn 4626   class class class wbr 5143  cmpt 5225  ccnv 5684  cima 5688   Fn wfn 6556  cfv 6561  (class class class)co 7431  cn 12266  cz 12613  cdvds 16290  Basecbs 17247  s cress 17274  +gcplusg 17297  0gc0g 17484  .gcmg 19085  CMndccmn 19798  Ringcrg 20230  RSpancrsp 21217  ringczring 21457   PrimRoots cprimroots 42092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-dvds 16291  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-dvdsr 20357  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-rsp 21219  df-cnfld 21365  df-zring 21458  df-primroots 42093
This theorem is referenced by:  aks6d1c6lem5  42178
  Copyright terms: Public domain W3C validator