Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem3 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem3 42171
Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
aks6d1c6isolem3.1 𝑆 = (RSpan‘ℤring)
Assertion
Ref Expression
aks6d1c6isolem3 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑆(𝑥,𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zringring 21366 . . . 4 ring ∈ Ring
21a1i 11 . . 3 (𝜑 → ℤring ∈ Ring)
3 aks6d1c6isolem1.2 . . . 4 (𝜑𝐾 ∈ ℕ)
43nnzd 12563 . . 3 (𝜑𝐾 ∈ ℤ)
5 zringbas 21370 . . . 4 ℤ = (Base‘ℤring)
6 aks6d1c6isolem3.1 . . . 4 𝑆 = (RSpan‘ℤring)
7 dvdsrzring 21378 . . . 4 ∥ = (∥r‘ℤring)
85, 6, 7rspsn 21250 . . 3 ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
92, 4, 8syl2anc 584 . 2 (𝜑 → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
10 ovexd 7425 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ V)
11 aks6d1c6isolem1.4 . . . . . 6 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
1210, 11fmptd 7089 . . . . 5 (𝜑𝐹:ℤ⟶V)
1312ffnd 6692 . . . 4 (𝜑𝐹 Fn ℤ)
14 fniniseg2 7037 . . . 4 (𝐹 Fn ℤ → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1513, 14syl 17 . . 3 (𝜑 → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1611a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
17 simpr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
1817oveq1d 7405 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
19 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
20 ovexd 7425 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
2116, 18, 19, 20fvmptd 6978 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
2221eqeq1d 2732 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ (𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈))))
23 aks6d1c6isolem1.1 . . . . . . . 8 (𝜑𝑅 ∈ CMnd)
2423adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑅 ∈ CMnd)
253adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝐾 ∈ ℕ)
26 aks6d1c6isolem1.5 . . . . . . . 8 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
2726adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾))
28 aks6d1c6isolem1.3 . . . . . . 7 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
2924, 25, 27, 28, 19primrootspoweq0 42101 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3022, 29bitrd 279 . . . . 5 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3130rabbidva 3415 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾𝑧})
32 df-rab 3409 . . . . . 6 {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)}
3332a1i 11 . . . . 5 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)})
34 simpr 484 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) → 𝐾𝑧)
35 dvdszrcl 16234 . . . . . . . . . 10 (𝐾𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ))
3635simprd 495 . . . . . . . . 9 (𝐾𝑧𝑧 ∈ ℤ)
3736ancri 549 . . . . . . . 8 (𝐾𝑧 → (𝑧 ∈ ℤ ∧ 𝐾𝑧))
3834, 37impbii 209 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧)
3938a1i 11 . . . . . 6 (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧))
4039abbidv 2796 . . . . 5 (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)} = {𝑧𝐾𝑧})
4133, 40eqtrd 2765 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧𝐾𝑧})
4231, 41eqtrd 2765 . . 3 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧𝐾𝑧})
4315, 42eqtr2d 2766 . 2 (𝜑 → {𝑧𝐾𝑧} = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
449, 43eqtrd 2765 1 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wrex 3054  {crab 3408  Vcvv 3450  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644   Fn wfn 6509  cfv 6514  (class class class)co 7390  cn 12193  cz 12536  cdvds 16229  Basecbs 17186  s cress 17207  +gcplusg 17227  0gc0g 17409  .gcmg 19006  CMndccmn 19717  Ringcrg 20149  RSpancrsp 21124  ringczring 21363   PrimRoots cprimroots 42086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-dvds 16230  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-dvdsr 20273  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-rsp 21126  df-cnfld 21272  df-zring 21364  df-primroots 42087
This theorem is referenced by:  aks6d1c6lem5  42172
  Copyright terms: Public domain W3C validator