| Mathbox for metakunt |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > aks6d1c6isolem3 | Structured version Visualization version GIF version | ||
| Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.) |
| Ref | Expression |
|---|---|
| aks6d1c6isolem1.1 | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| aks6d1c6isolem1.2 | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| aks6d1c6isolem1.3 | ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} |
| aks6d1c6isolem1.4 | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| aks6d1c6isolem1.5 | ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| aks6d1c6isolem3.1 | ⊢ 𝑆 = (RSpan‘ℤring) |
| Ref | Expression |
|---|---|
| aks6d1c6isolem3 | ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zringring 21359 | . . . 4 ⊢ ℤring ∈ Ring | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (𝜑 → ℤring ∈ Ring) |
| 3 | aks6d1c6isolem1.2 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 4 | 3 | nnzd 12556 | . . 3 ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 5 | zringbas 21363 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 6 | aks6d1c6isolem3.1 | . . . 4 ⊢ 𝑆 = (RSpan‘ℤring) | |
| 7 | dvdsrzring 21371 | . . . 4 ⊢ ∥ = (∥r‘ℤring) | |
| 8 | 5, 6, 7 | rspsn 21243 | . . 3 ⊢ ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 9 | 2, 4, 8 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑆‘{𝐾}) = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 10 | ovexd 7422 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
| 11 | aks6d1c6isolem1.4 | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀)) | |
| 12 | 10, 11 | fmptd 7086 | . . . . 5 ⊢ (𝜑 → 𝐹:ℤ⟶V) |
| 13 | 12 | ffnd 6689 | . . . 4 ⊢ (𝜑 → 𝐹 Fn ℤ) |
| 14 | fniniseg2 7034 | . . . 4 ⊢ (𝐹 Fn ℤ → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))}) |
| 16 | 11 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀))) |
| 17 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧) | |
| 18 | 17 | oveq1d 7402 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅 ↾s 𝑈))𝑀) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 19 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑧 ∈ ℤ) | |
| 20 | ovexd 7422 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) ∈ V) | |
| 21 | 16, 18, 19, 20 | fvmptd 6975 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → (𝐹‘𝑧) = (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀)) |
| 22 | 21 | eqeq1d 2731 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ (𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)))) |
| 23 | aks6d1c6isolem1.1 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑅 ∈ CMnd) |
| 25 | 3 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝐾 ∈ ℕ) |
| 26 | aks6d1c6isolem1.5 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) | |
| 27 | 26 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾)) |
| 28 | aks6d1c6isolem1.3 | . . . . . . 7 ⊢ 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g‘𝑅)𝑎) = (0g‘𝑅)} | |
| 29 | 24, 25, 27, 28, 19 | primrootspoweq0 42094 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅 ↾s 𝑈))𝑀) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
| 30 | 22, 29 | bitrd 279 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈)) ↔ 𝐾 ∥ 𝑧)) |
| 31 | 30 | rabbidva 3412 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧}) |
| 32 | df-rab 3406 | . . . . . 6 ⊢ {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} | |
| 33 | 32 | a1i 11 | . . . . 5 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)}) |
| 34 | simpr 484 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) → 𝐾 ∥ 𝑧) | |
| 35 | dvdszrcl 16227 | . . . . . . . . . 10 ⊢ (𝐾 ∥ 𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ)) | |
| 36 | 35 | simprd 495 | . . . . . . . . 9 ⊢ (𝐾 ∥ 𝑧 → 𝑧 ∈ ℤ) |
| 37 | 36 | ancri 549 | . . . . . . . 8 ⊢ (𝐾 ∥ 𝑧 → (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)) |
| 38 | 34, 37 | impbii 209 | . . . . . . 7 ⊢ ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧) |
| 39 | 38 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧) ↔ 𝐾 ∥ 𝑧)) |
| 40 | 39 | abbidv 2795 | . . . . 5 ⊢ (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾 ∥ 𝑧)} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 41 | 33, 40 | eqtrd 2764 | . . . 4 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾 ∥ 𝑧} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 42 | 31, 41 | eqtrd 2764 | . . 3 ⊢ (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹‘𝑧) = (0g‘(𝑅 ↾s 𝑈))} = {𝑧 ∣ 𝐾 ∥ 𝑧}) |
| 43 | 15, 42 | eqtr2d 2765 | . 2 ⊢ (𝜑 → {𝑧 ∣ 𝐾 ∥ 𝑧} = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
| 44 | 9, 43 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑆‘{𝐾}) = (◡𝐹 “ {(0g‘(𝑅 ↾s 𝑈))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {crab 3405 Vcvv 3447 {csn 4589 class class class wbr 5107 ↦ cmpt 5188 ◡ccnv 5637 “ cima 5641 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ℕcn 12186 ℤcz 12529 ∥ cdvds 16222 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 0gc0g 17402 .gcmg 18999 CMndccmn 19710 Ringcrg 20142 RSpancrsp 21117 ℤringczring 21356 PrimRoots cprimroots 42079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 ax-addf 11147 ax-mulf 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-rp 12952 df-ico 13312 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-seq 13967 df-dvds 16223 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-starv 17235 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-unif 17243 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-cring 20145 df-dvdsr 20266 df-subrng 20455 df-subrg 20479 df-lmod 20768 df-lss 20838 df-lsp 20878 df-sra 21080 df-rgmod 21081 df-rsp 21119 df-cnfld 21265 df-zring 21357 df-primroots 42080 |
| This theorem is referenced by: aks6d1c6lem5 42165 |
| Copyright terms: Public domain | W3C validator |