Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aks6d1c6isolem3 Structured version   Visualization version   GIF version

Theorem aks6d1c6isolem3 42217
Description: The preimage of a map sending a primitive root to its powers of zero is equal to the set of integers that divide 𝑅. (Contributed by metakunt, 15-May-2025.)
Hypotheses
Ref Expression
aks6d1c6isolem1.1 (𝜑𝑅 ∈ CMnd)
aks6d1c6isolem1.2 (𝜑𝐾 ∈ ℕ)
aks6d1c6isolem1.3 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
aks6d1c6isolem1.4 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
aks6d1c6isolem1.5 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
aks6d1c6isolem3.1 𝑆 = (RSpan‘ℤring)
Assertion
Ref Expression
aks6d1c6isolem3 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Distinct variable groups:   𝑥,𝑀   𝑅,𝑎,𝑖   𝑥,𝑅   𝑥,𝑈   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑎)   𝑆(𝑥,𝑖,𝑎)   𝑈(𝑖,𝑎)   𝐹(𝑥,𝑖,𝑎)   𝐾(𝑥,𝑖,𝑎)   𝑀(𝑖,𝑎)

Proof of Theorem aks6d1c6isolem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 zringring 21386 . . . 4 ring ∈ Ring
21a1i 11 . . 3 (𝜑 → ℤring ∈ Ring)
3 aks6d1c6isolem1.2 . . . 4 (𝜑𝐾 ∈ ℕ)
43nnzd 12495 . . 3 (𝜑𝐾 ∈ ℤ)
5 zringbas 21390 . . . 4 ℤ = (Base‘ℤring)
6 aks6d1c6isolem3.1 . . . 4 𝑆 = (RSpan‘ℤring)
7 dvdsrzring 21398 . . . 4 ∥ = (∥r‘ℤring)
85, 6, 7rspsn 21270 . . 3 ((ℤring ∈ Ring ∧ 𝐾 ∈ ℤ) → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
92, 4, 8syl2anc 584 . 2 (𝜑 → (𝑆‘{𝐾}) = {𝑧𝐾𝑧})
10 ovexd 7381 . . . . . 6 ((𝜑𝑥 ∈ ℤ) → (𝑥(.g‘(𝑅s 𝑈))𝑀) ∈ V)
11 aks6d1c6isolem1.4 . . . . . 6 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀))
1210, 11fmptd 7047 . . . . 5 (𝜑𝐹:ℤ⟶V)
1312ffnd 6652 . . . 4 (𝜑𝐹 Fn ℤ)
14 fniniseg2 6995 . . . 4 (𝐹 Fn ℤ → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1513, 14syl 17 . . 3 (𝜑 → (𝐹 “ {(0g‘(𝑅s 𝑈))}) = {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))})
1611a1i 11 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥(.g‘(𝑅s 𝑈))𝑀)))
17 simpr 484 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → 𝑥 = 𝑧)
1817oveq1d 7361 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ 𝑥 = 𝑧) → (𝑥(.g‘(𝑅s 𝑈))𝑀) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
19 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → 𝑧 ∈ ℤ)
20 ovexd 7381 . . . . . . . 8 ((𝜑𝑧 ∈ ℤ) → (𝑧(.g‘(𝑅s 𝑈))𝑀) ∈ V)
2116, 18, 19, 20fvmptd 6936 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → (𝐹𝑧) = (𝑧(.g‘(𝑅s 𝑈))𝑀))
2221eqeq1d 2733 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ (𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈))))
23 aks6d1c6isolem1.1 . . . . . . . 8 (𝜑𝑅 ∈ CMnd)
2423adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑅 ∈ CMnd)
253adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝐾 ∈ ℕ)
26 aks6d1c6isolem1.5 . . . . . . . 8 (𝜑𝑀 ∈ (𝑅 PrimRoots 𝐾))
2726adantr 480 . . . . . . 7 ((𝜑𝑧 ∈ ℤ) → 𝑀 ∈ (𝑅 PrimRoots 𝐾))
28 aks6d1c6isolem1.3 . . . . . . 7 𝑈 = {𝑎 ∈ (Base‘𝑅) ∣ ∃𝑖 ∈ (Base‘𝑅)(𝑖(+g𝑅)𝑎) = (0g𝑅)}
2924, 25, 27, 28, 19primrootspoweq0 42147 . . . . . 6 ((𝜑𝑧 ∈ ℤ) → ((𝑧(.g‘(𝑅s 𝑈))𝑀) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3022, 29bitrd 279 . . . . 5 ((𝜑𝑧 ∈ ℤ) → ((𝐹𝑧) = (0g‘(𝑅s 𝑈)) ↔ 𝐾𝑧))
3130rabbidva 3401 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧 ∈ ℤ ∣ 𝐾𝑧})
32 df-rab 3396 . . . . . 6 {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)}
3332a1i 11 . . . . 5 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)})
34 simpr 484 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) → 𝐾𝑧)
35 dvdszrcl 16168 . . . . . . . . . 10 (𝐾𝑧 → (𝐾 ∈ ℤ ∧ 𝑧 ∈ ℤ))
3635simprd 495 . . . . . . . . 9 (𝐾𝑧𝑧 ∈ ℤ)
3736ancri 549 . . . . . . . 8 (𝐾𝑧 → (𝑧 ∈ ℤ ∧ 𝐾𝑧))
3834, 37impbii 209 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧)
3938a1i 11 . . . . . 6 (𝜑 → ((𝑧 ∈ ℤ ∧ 𝐾𝑧) ↔ 𝐾𝑧))
4039abbidv 2797 . . . . 5 (𝜑 → {𝑧 ∣ (𝑧 ∈ ℤ ∧ 𝐾𝑧)} = {𝑧𝐾𝑧})
4133, 40eqtrd 2766 . . . 4 (𝜑 → {𝑧 ∈ ℤ ∣ 𝐾𝑧} = {𝑧𝐾𝑧})
4231, 41eqtrd 2766 . . 3 (𝜑 → {𝑧 ∈ ℤ ∣ (𝐹𝑧) = (0g‘(𝑅s 𝑈))} = {𝑧𝐾𝑧})
4315, 42eqtr2d 2767 . 2 (𝜑 → {𝑧𝐾𝑧} = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
449, 43eqtrd 2766 1 (𝜑 → (𝑆‘{𝐾}) = (𝐹 “ {(0g‘(𝑅s 𝑈))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  {crab 3395  Vcvv 3436  {csn 4573   class class class wbr 5089  cmpt 5170  ccnv 5613  cima 5617   Fn wfn 6476  cfv 6481  (class class class)co 7346  cn 12125  cz 12468  cdvds 16163  Basecbs 17120  s cress 17141  +gcplusg 17161  0gc0g 17343  .gcmg 18980  CMndccmn 19692  Ringcrg 20151  RSpancrsp 21144  ringczring 21383   PrimRoots cprimroots 42132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-ico 13251  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-mulg 18981  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-dvdsr 20275  df-subrng 20461  df-subrg 20485  df-lmod 20795  df-lss 20865  df-lsp 20905  df-sra 21107  df-rgmod 21108  df-rsp 21146  df-cnfld 21292  df-zring 21384  df-primroots 42133
This theorem is referenced by:  aks6d1c6lem5  42218
  Copyright terms: Public domain W3C validator