![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidval | ⊢ 1 = (0g‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 20076 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
2 | 1 | fveq1i 6891 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
3 | fnmgp 20030 | . . . . 5 ⊢ mulGrp Fn V | |
4 | fvco2 6987 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
5 | 3, 4 | mpan 686 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
6 | 2, 5 | eqtrid 2782 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 0g0 18589 | . . . 4 ⊢ ∅ = (0g‘∅) | |
8 | fvprc 6882 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
9 | fvprc 6882 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
10 | 9 | fveq2d 6894 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
11 | 7, 8, 10 | 3eqtr4a 2796 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | 14 | fveq2i 6893 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
16 | 12, 13, 15 | 3eqtr4i 2768 | 1 ⊢ 1 = (0g‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ∅c0 4321 ∘ ccom 5679 Fn wfn 6537 ‘cfv 6542 0gc0g 17389 mulGrpcmgp 20028 1rcur 20075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-nn 12217 df-slot 17119 df-ndx 17131 df-base 17149 df-0g 17391 df-mgp 20029 df-ur 20076 |
This theorem is referenced by: dfur2 20078 srgidcl 20093 srgidmlem 20095 issrgid 20098 srgpcomp 20112 srg1expzeq1 20119 srgbinom 20125 ringidcl 20154 ringidmlem 20156 isringid 20159 prds1 20211 pwspjmhmmgpd 20216 xpsring1d 20221 oppr1 20241 unitsubm 20277 rngidpropd 20306 dfrhm2 20365 isrhm2d 20378 rhm1 20380 c0rhm 20423 c0rnghm 20424 subrgsubm 20475 issubrg3 20490 cnfldexp 21178 expmhm 21214 nn0srg 21215 rge0srg 21216 assamulgscmlem1 21672 mplcoe3 21812 mplcoe5 21814 mplbas2 21816 evlslem1 21864 evlsgsummul 21874 mhppwdeg 21912 ply1scltm 22023 lply1binomsc 22051 evls1gsummul 22064 evl1gsummul 22099 madetsumid 22183 mat1mhm 22206 scmatmhm 22256 mdet0pr 22314 mdetunilem7 22340 smadiadetlem4 22391 mat2pmatmhm 22455 pm2mpmhm 22542 chfacfscmulgsum 22582 chfacfpmmulgsum 22586 cpmadugsumlemF 22598 efsubm 26296 amgmlem 26730 amgm 26731 wilthlem2 26809 wilthlem3 26810 dchrelbas3 26977 dchrzrh1 26983 dchrmulcl 26988 dchrn0 26989 dchrinvcl 26992 dchrfi 26994 dchrabs 26999 sumdchr2 27009 rpvmasum2 27251 psgnid 32526 cnmsgn0g 32575 altgnsg 32578 urpropd 32648 freshmansdream 32651 frobrhm 32652 fermltlchr 32752 znfermltl 32753 evls1fldgencl 33033 iistmd 33180 pwsgprod 41416 evlsvvvallem 41435 evlsvvval 41437 evlselv 41461 mhphf 41471 isdomn3 42248 mon1psubm 42250 deg1mhm 42251 amgmwlem 47936 amgmlemALT 47937 |
Copyright terms: Public domain | W3C validator |