Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidval | ⊢ 1 = (0g‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 19320 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
2 | 1 | fveq1i 6659 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
3 | fnmgp 19309 | . . . . 5 ⊢ mulGrp Fn V | |
4 | fvco2 6749 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
5 | 3, 4 | mpan 689 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
6 | 2, 5 | syl5eq 2805 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 0g0 17940 | . . . 4 ⊢ ∅ = (0g‘∅) | |
8 | fvprc 6650 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
9 | fvprc 6650 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
10 | 9 | fveq2d 6662 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
11 | 7, 8, 10 | 3eqtr4a 2819 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
12 | 6, 11 | pm2.61i 185 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | 14 | fveq2i 6661 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
16 | 12, 13, 15 | 3eqtr4i 2791 | 1 ⊢ 1 = (0g‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ∅c0 4225 ∘ ccom 5528 Fn wfn 6330 ‘cfv 6335 0gc0g 16771 mulGrpcmgp 19307 1rcur 19319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-fv 6343 df-ov 7153 df-slot 16545 df-base 16547 df-0g 16773 df-mgp 19308 df-ur 19320 |
This theorem is referenced by: dfur2 19322 srgidcl 19336 srgidmlem 19338 issrgid 19341 srgpcomp 19350 srg1expzeq1 19357 srgbinom 19363 ringidcl 19389 ringidmlem 19391 isringid 19394 prds1 19435 oppr1 19455 unitsubm 19491 rngidpropd 19516 dfrhm2 19540 isrhm2d 19551 rhm1 19553 subrgsubm 19616 issubrg3 19631 cnfldexp 20199 expmhm 20235 nn0srg 20236 rge0srg 20237 assamulgscmlem1 20662 mplcoe3 20798 mplcoe5 20800 mplbas2 20802 evlslem1 20845 evlsgsummul 20855 mhppwdeg 20893 ply1scltm 21005 lply1binomsc 21031 evls1gsummul 21044 evl1gsummul 21079 madetsumid 21161 mat1mhm 21184 scmatmhm 21234 mdet0pr 21292 mdetunilem7 21318 smadiadetlem4 21369 mat2pmatmhm 21433 pm2mpmhm 21520 chfacfscmulgsum 21560 chfacfpmmulgsum 21564 cpmadugsumlemF 21576 efsubm 25242 amgmlem 25674 amgm 25675 wilthlem2 25753 wilthlem3 25754 dchrelbas3 25921 dchrzrh1 25927 dchrmulcl 25932 dchrn0 25933 dchrinvcl 25936 dchrfi 25938 dchrabs 25943 sumdchr2 25953 rpvmasum2 26195 psgnid 30890 cnmsgn0g 30939 altgnsg 30942 freshmansdream 31010 frobrhm 31011 znfermltl 31083 iistmd 31373 pwspjmhmmgpd 39774 pwsgprod 39776 evlsbagval 39780 mhphf 39790 isdomn3 40521 mon1psubm 40523 deg1mhm 40524 c0rhm 44903 c0rnghm 44904 amgmwlem 45721 amgmlemALT 45722 |
Copyright terms: Public domain | W3C validator |