| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| ringidval.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidval | ⊢ 1 = (0g‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ur 20102 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 2 | 1 | fveq1i 6829 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
| 3 | fnmgp 20062 | . . . . 5 ⊢ mulGrp Fn V | |
| 4 | fvco2 6925 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 6 | 2, 5 | eqtrid 2780 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 7 | 0g0 18574 | . . . 4 ⊢ ∅ = (0g‘∅) | |
| 8 | fvprc 6820 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
| 9 | fvprc 6820 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 10 | 9 | fveq2d 6832 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
| 11 | 7, 8, 10 | 3eqtr4a 2794 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 15 | 14 | fveq2i 6831 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
| 16 | 12, 13, 15 | 3eqtr4i 2766 | 1 ⊢ 1 = (0g‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ∘ ccom 5623 Fn wfn 6481 ‘cfv 6486 0gc0g 17345 mulGrpcmgp 20060 1rcur 20101 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-slot 17095 df-ndx 17107 df-base 17123 df-0g 17347 df-mgp 20061 df-ur 20102 |
| This theorem is referenced by: dfur2 20104 srgidcl 20119 srgidmlem 20121 issrgid 20124 srgpcomp 20138 srg1expzeq1 20145 srgbinom 20151 ringidcl 20185 ringidmlem 20188 isringid 20191 prds1 20243 pwspjmhmmgpd 20248 xpsring1d 20253 oppr1 20270 unitsubm 20306 rngidpropd 20335 dfrhm2 20394 isrhm2d 20406 rhm1 20408 c0rhm 20451 c0rnghm 20452 subrgsubm 20502 issubrg3 20517 isdomn3 20632 cnfldexp 21343 expmhm 21375 nn0srg 21376 rge0srg 21377 fermltlchr 21468 freshmansdream 21513 frobrhm 21514 assamulgscmlem1 21838 mplcoe3 21974 mplcoe5 21976 mplbas2 21978 evlslem1 22018 evlsgsummul 22028 mhppwdeg 22066 psdpw 22086 ply1scltm 22196 ply1idvr1 22210 lply1binomsc 22227 evls1gsummul 22241 evl1gsummul 22276 madetsumid 22377 mat1mhm 22400 scmatmhm 22450 mdet0pr 22508 mdetunilem7 22534 smadiadetlem4 22585 mat2pmatmhm 22649 pm2mpmhm 22736 chfacfscmulgsum 22776 chfacfpmmulgsum 22780 cpmadugsumlemF 22792 efsubm 26488 amgmlem 26928 amgm 26929 wilthlem2 27007 wilthlem3 27008 dchrelbas3 27177 dchrzrh1 27183 dchrmulcl 27188 dchrn0 27189 dchrinvcl 27192 dchrfi 27194 dchrabs 27199 sumdchr2 27209 rpvmasum2 27451 psgnid 33073 cnmsgn0g 33122 altgnsg 33125 urpropd 33206 isunit3 33215 elrgspnlem2 33217 erlbr2d 33238 erler 33239 rloccring 33244 rloc0g 33245 rloc1r 33246 rlocf1 33247 domnprodn0 33249 rrgsubm 33257 znfermltl 33338 unitprodclb 33361 ssdifidlprm 33430 rprmdvdspow 33505 rprmdvdsprod 33506 1arithidomlem1 33507 1arithidom 33509 1arithufdlem3 33518 1arithufdlem4 33519 dfufd2lem 33521 zringfrac 33526 ressply1evls1 33535 evl1deg1 33546 evl1deg2 33547 evl1deg3 33548 assarrginv 33670 evls1fldgencl 33704 iistmd 33936 aks6d1c1p6 42227 evl1gprodd 42230 idomnnzpownz 42245 idomnnzgmulnz 42246 aks6d1c5lem2 42251 deg1gprod 42253 deg1pow 42254 aks5lem2 42300 unitscyglem5 42312 domnexpgn0cl 42641 abvexp 42650 pwsgprod 42662 evlsvvvallem 42679 evlsvvval 42681 evlselv 42705 mhphf 42715 mon1psubm 43316 deg1mhm 43317 amgmwlem 49927 amgmlemALT 49928 |
| Copyright terms: Public domain | W3C validator |