| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| ringidval.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidval | ⊢ 1 = (0g‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ur 20085 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 2 | 1 | fveq1i 6827 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
| 3 | fnmgp 20045 | . . . . 5 ⊢ mulGrp Fn V | |
| 4 | fvco2 6924 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 6 | 2, 5 | eqtrid 2776 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 7 | 0g0 18556 | . . . 4 ⊢ ∅ = (0g‘∅) | |
| 8 | fvprc 6818 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
| 9 | fvprc 6818 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 10 | 9 | fveq2d 6830 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
| 11 | 7, 8, 10 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 15 | 14 | fveq2i 6829 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
| 16 | 12, 13, 15 | 3eqtr4i 2762 | 1 ⊢ 1 = (0g‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 ∘ ccom 5627 Fn wfn 6481 ‘cfv 6486 0gc0g 17361 mulGrpcmgp 20043 1rcur 20084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-slot 17111 df-ndx 17123 df-base 17139 df-0g 17363 df-mgp 20044 df-ur 20085 |
| This theorem is referenced by: dfur2 20087 srgidcl 20102 srgidmlem 20104 issrgid 20107 srgpcomp 20121 srg1expzeq1 20128 srgbinom 20134 ringidcl 20168 ringidmlem 20171 isringid 20174 prds1 20226 pwspjmhmmgpd 20231 xpsring1d 20236 oppr1 20253 unitsubm 20289 rngidpropd 20318 dfrhm2 20377 isrhm2d 20390 rhm1 20392 c0rhm 20437 c0rnghm 20438 subrgsubm 20488 issubrg3 20503 isdomn3 20618 cnfldexp 21329 expmhm 21361 nn0srg 21362 rge0srg 21363 fermltlchr 21454 freshmansdream 21499 frobrhm 21500 assamulgscmlem1 21824 mplcoe3 21961 mplcoe5 21963 mplbas2 21965 evlslem1 22005 evlsgsummul 22015 mhppwdeg 22053 psdpw 22073 ply1scltm 22183 ply1idvr1 22197 lply1binomsc 22214 evls1gsummul 22228 evl1gsummul 22263 madetsumid 22364 mat1mhm 22387 scmatmhm 22437 mdet0pr 22495 mdetunilem7 22521 smadiadetlem4 22572 mat2pmatmhm 22636 pm2mpmhm 22723 chfacfscmulgsum 22763 chfacfpmmulgsum 22767 cpmadugsumlemF 22779 efsubm 26476 amgmlem 26916 amgm 26917 wilthlem2 26995 wilthlem3 26996 dchrelbas3 27165 dchrzrh1 27171 dchrmulcl 27176 dchrn0 27177 dchrinvcl 27180 dchrfi 27182 dchrabs 27187 sumdchr2 27197 rpvmasum2 27439 psgnid 33052 cnmsgn0g 33101 altgnsg 33104 urpropd 33182 isunit3 33191 elrgspnlem2 33193 erlbr2d 33214 erler 33215 rloccring 33220 rloc0g 33221 rloc1r 33222 rlocf1 33223 domnprodn0 33225 rrgsubm 33233 znfermltl 33313 unitprodclb 33336 ssdifidlprm 33405 rprmdvdspow 33480 rprmdvdsprod 33481 1arithidomlem1 33482 1arithidom 33484 1arithufdlem3 33493 1arithufdlem4 33494 dfufd2lem 33496 zringfrac 33501 ressply1evls1 33510 evl1deg1 33521 evl1deg2 33522 evl1deg3 33523 assarrginv 33608 evls1fldgencl 33641 iistmd 33868 aks6d1c1p6 42087 evl1gprodd 42090 idomnnzpownz 42105 idomnnzgmulnz 42106 aks6d1c5lem2 42111 deg1gprod 42113 deg1pow 42114 aks5lem2 42160 unitscyglem5 42172 domnexpgn0cl 42496 abvexp 42505 pwsgprod 42517 evlsvvvallem 42534 evlsvvval 42536 evlselv 42560 mhphf 42570 mon1psubm 43172 deg1mhm 43173 amgmwlem 49788 amgmlemALT 49789 |
| Copyright terms: Public domain | W3C validator |