![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidval | ⊢ 1 = (0g‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 20087 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
2 | 1 | fveq1i 6886 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
3 | fnmgp 20041 | . . . . 5 ⊢ mulGrp Fn V | |
4 | fvco2 6982 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
5 | 3, 4 | mpan 687 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
6 | 2, 5 | eqtrid 2778 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 0g0 18597 | . . . 4 ⊢ ∅ = (0g‘∅) | |
8 | fvprc 6877 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
9 | fvprc 6877 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
10 | 9 | fveq2d 6889 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
11 | 7, 8, 10 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | 14 | fveq2i 6888 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
16 | 12, 13, 15 | 3eqtr4i 2764 | 1 ⊢ 1 = (0g‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 Vcvv 3468 ∅c0 4317 ∘ ccom 5673 Fn wfn 6532 ‘cfv 6537 0gc0g 17394 mulGrpcmgp 20039 1rcur 20086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-1cn 11170 ax-addcl 11172 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-ov 7408 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-nn 12217 df-slot 17124 df-ndx 17136 df-base 17154 df-0g 17396 df-mgp 20040 df-ur 20087 |
This theorem is referenced by: dfur2 20089 srgidcl 20104 srgidmlem 20106 issrgid 20109 srgpcomp 20123 srg1expzeq1 20130 srgbinom 20136 ringidcl 20165 ringidmlem 20167 isringid 20170 prds1 20222 pwspjmhmmgpd 20227 xpsring1d 20232 oppr1 20252 unitsubm 20288 rngidpropd 20317 dfrhm2 20376 isrhm2d 20389 rhm1 20391 c0rhm 20434 c0rnghm 20435 subrgsubm 20487 issubrg3 20502 cnfldexp 21293 expmhm 21330 nn0srg 21331 rge0srg 21332 fermltlchr 21420 freshmansdream 21469 assamulgscmlem1 21793 mplcoe3 21935 mplcoe5 21937 mplbas2 21939 evlslem1 21987 evlsgsummul 21997 mhppwdeg 22033 ply1scltm 22155 lply1binomsc 22185 evls1gsummul 22199 evl1gsummul 22234 madetsumid 22318 mat1mhm 22341 scmatmhm 22391 mdet0pr 22449 mdetunilem7 22475 smadiadetlem4 22526 mat2pmatmhm 22590 pm2mpmhm 22677 chfacfscmulgsum 22717 chfacfpmmulgsum 22721 cpmadugsumlemF 22733 efsubm 26440 amgmlem 26877 amgm 26878 wilthlem2 26956 wilthlem3 26957 dchrelbas3 27126 dchrzrh1 27132 dchrmulcl 27137 dchrn0 27138 dchrinvcl 27141 dchrfi 27143 dchrabs 27148 sumdchr2 27158 rpvmasum2 27400 psgnid 32762 cnmsgn0g 32811 altgnsg 32814 urpropd 32882 frobrhm 32884 znfermltl 32985 evls1fldgencl 33263 iistmd 33412 aks6d1c1p6 41491 evl1gprodd 41494 idomnnzpownz 41508 idomnnzgmulnz 41509 aks6d1c5lem2 41514 deg1gprod 41517 deg1pow 41518 pwsgprod 41671 evlsvvvallem 41690 evlsvvval 41692 evlselv 41716 mhphf 41726 isdomn3 42523 mon1psubm 42524 deg1mhm 42525 amgmwlem 48123 amgmlemALT 48124 |
Copyright terms: Public domain | W3C validator |