![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidval | ⊢ 1 = (0g‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 20209 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
2 | 1 | fveq1i 6921 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
3 | fnmgp 20163 | . . . . 5 ⊢ mulGrp Fn V | |
4 | fvco2 7019 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
5 | 3, 4 | mpan 689 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
6 | 2, 5 | eqtrid 2792 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 0g0 18702 | . . . 4 ⊢ ∅ = (0g‘∅) | |
8 | fvprc 6912 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
9 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
10 | 9 | fveq2d 6924 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
11 | 7, 8, 10 | 3eqtr4a 2806 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | 14 | fveq2i 6923 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
16 | 12, 13, 15 | 3eqtr4i 2778 | 1 ⊢ 1 = (0g‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 ∘ ccom 5704 Fn wfn 6568 ‘cfv 6573 0gc0g 17499 mulGrpcmgp 20161 1rcur 20208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 df-0g 17501 df-mgp 20162 df-ur 20209 |
This theorem is referenced by: dfur2 20211 srgidcl 20226 srgidmlem 20228 issrgid 20231 srgpcomp 20245 srg1expzeq1 20252 srgbinom 20258 ringidcl 20289 ringidmlem 20291 isringid 20294 prds1 20346 pwspjmhmmgpd 20351 xpsring1d 20356 oppr1 20376 unitsubm 20412 rngidpropd 20441 dfrhm2 20500 isrhm2d 20513 rhm1 20515 c0rhm 20560 c0rnghm 20561 subrgsubm 20613 issubrg3 20628 isdomn3 20737 cnfldexp 21440 expmhm 21477 nn0srg 21478 rge0srg 21479 fermltlchr 21567 freshmansdream 21616 frobrhm 21617 assamulgscmlem1 21942 mplcoe3 22079 mplcoe5 22081 mplbas2 22083 evlslem1 22129 evlsgsummul 22139 mhppwdeg 22177 ply1scltm 22305 ply1idvr1 22319 lply1binomsc 22336 evls1gsummul 22350 evl1gsummul 22385 madetsumid 22488 mat1mhm 22511 scmatmhm 22561 mdet0pr 22619 mdetunilem7 22645 smadiadetlem4 22696 mat2pmatmhm 22760 pm2mpmhm 22847 chfacfscmulgsum 22887 chfacfpmmulgsum 22891 cpmadugsumlemF 22903 efsubm 26611 amgmlem 27051 amgm 27052 wilthlem2 27130 wilthlem3 27131 dchrelbas3 27300 dchrzrh1 27306 dchrmulcl 27311 dchrn0 27312 dchrinvcl 27315 dchrfi 27317 dchrabs 27322 sumdchr2 27332 rpvmasum2 27574 psgnid 33090 cnmsgn0g 33139 altgnsg 33142 urpropd 33212 isunit3 33221 erlbr2d 33236 erler 33237 rloccring 33242 rloc0g 33243 rloc1r 33244 rlocf1 33245 domnprodn0 33247 rrgsubm 33253 znfermltl 33359 unitprodclb 33382 ssdifidlprm 33451 rprmdvdspow 33526 rprmdvdsprod 33527 1arithidomlem1 33528 1arithidom 33530 1arithufdlem3 33539 1arithufdlem4 33540 dfufd2lem 33542 zringfrac 33547 evl1deg1 33566 evl1deg2 33567 evl1deg3 33568 assarrginv 33649 evls1fldgencl 33680 iistmd 33848 aks6d1c1p6 42071 evl1gprodd 42074 idomnnzpownz 42089 idomnnzgmulnz 42090 aks6d1c5lem2 42095 deg1gprod 42097 deg1pow 42098 aks5lem2 42144 unitscyglem5 42156 domnexpgn0cl 42478 abvexp 42487 pwsgprod 42499 evlsvvvallem 42516 evlsvvval 42518 evlselv 42542 mhphf 42552 mon1psubm 43160 deg1mhm 43161 amgmwlem 48896 amgmlemALT 48897 |
Copyright terms: Public domain | W3C validator |