Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidval | ⊢ 1 = (0g‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 19719 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
2 | 1 | fveq1i 6769 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
3 | fnmgp 19703 | . . . . 5 ⊢ mulGrp Fn V | |
4 | fvco2 6859 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
5 | 3, 4 | mpan 686 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
6 | 2, 5 | eqtrid 2791 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 0g0 18329 | . . . 4 ⊢ ∅ = (0g‘∅) | |
8 | fvprc 6760 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
9 | fvprc 6760 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
10 | 9 | fveq2d 6772 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
11 | 7, 8, 10 | 3eqtr4a 2805 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | 14 | fveq2i 6771 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
16 | 12, 13, 15 | 3eqtr4i 2777 | 1 ⊢ 1 = (0g‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∅c0 4261 ∘ ccom 5592 Fn wfn 6425 ‘cfv 6430 0gc0g 17131 mulGrpcmgp 19701 1rcur 19718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-slot 16864 df-ndx 16876 df-base 16894 df-0g 17133 df-mgp 19702 df-ur 19719 |
This theorem is referenced by: dfur2 19721 srgidcl 19735 srgidmlem 19737 issrgid 19740 srgpcomp 19749 srg1expzeq1 19756 srgbinom 19762 ringidcl 19788 ringidmlem 19790 isringid 19793 prds1 19834 oppr1 19857 unitsubm 19893 rngidpropd 19918 dfrhm2 19942 isrhm2d 19953 rhm1 19955 subrgsubm 20018 issubrg3 20033 cnfldexp 20612 expmhm 20648 nn0srg 20649 rge0srg 20650 assamulgscmlem1 21084 mplcoe3 21220 mplcoe5 21222 mplbas2 21224 evlslem1 21273 evlsgsummul 21283 mhppwdeg 21321 ply1scltm 21433 lply1binomsc 21459 evls1gsummul 21472 evl1gsummul 21507 madetsumid 21591 mat1mhm 21614 scmatmhm 21664 mdet0pr 21722 mdetunilem7 21748 smadiadetlem4 21799 mat2pmatmhm 21863 pm2mpmhm 21950 chfacfscmulgsum 21990 chfacfpmmulgsum 21994 cpmadugsumlemF 22006 efsubm 25688 amgmlem 26120 amgm 26121 wilthlem2 26199 wilthlem3 26200 dchrelbas3 26367 dchrzrh1 26373 dchrmulcl 26378 dchrn0 26379 dchrinvcl 26382 dchrfi 26384 dchrabs 26389 sumdchr2 26399 rpvmasum2 26641 psgnid 31343 cnmsgn0g 31392 altgnsg 31395 freshmansdream 31463 frobrhm 31464 znfermltl 31541 iistmd 31831 pwspjmhmmgpd 40247 pwsgprod 40249 evlsbagval 40255 mhphf 40265 isdomn3 41009 mon1psubm 41011 deg1mhm 41012 c0rhm 45422 c0rnghm 45423 amgmwlem 46458 amgmlemALT 46459 |
Copyright terms: Public domain | W3C validator |