Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidval | ⊢ 1 = (0g‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 19783 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
2 | 1 | fveq1i 6805 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
3 | fnmgp 19767 | . . . . 5 ⊢ mulGrp Fn V | |
4 | fvco2 6897 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
5 | 3, 4 | mpan 688 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
6 | 2, 5 | eqtrid 2788 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 0g0 18393 | . . . 4 ⊢ ∅ = (0g‘∅) | |
8 | fvprc 6796 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
9 | fvprc 6796 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
10 | 9 | fveq2d 6808 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
11 | 7, 8, 10 | 3eqtr4a 2802 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | 14 | fveq2i 6807 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
16 | 12, 13, 15 | 3eqtr4i 2774 | 1 ⊢ 1 = (0g‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ∅c0 4262 ∘ ccom 5604 Fn wfn 6453 ‘cfv 6458 0gc0g 17195 mulGrpcmgp 19765 1rcur 19782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-1cn 10975 ax-addcl 10977 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-nn 12020 df-slot 16928 df-ndx 16940 df-base 16958 df-0g 17197 df-mgp 19766 df-ur 19783 |
This theorem is referenced by: dfur2 19785 srgidcl 19799 srgidmlem 19801 issrgid 19804 srgpcomp 19813 srg1expzeq1 19820 srgbinom 19826 ringidcl 19852 ringidmlem 19854 isringid 19857 prds1 19898 oppr1 19921 unitsubm 19957 rngidpropd 19982 dfrhm2 20006 isrhm2d 20017 rhm1 20019 subrgsubm 20082 issubrg3 20097 cnfldexp 20676 expmhm 20712 nn0srg 20713 rge0srg 20714 assamulgscmlem1 21148 mplcoe3 21284 mplcoe5 21286 mplbas2 21288 evlslem1 21337 evlsgsummul 21347 mhppwdeg 21385 ply1scltm 21497 lply1binomsc 21523 evls1gsummul 21536 evl1gsummul 21571 madetsumid 21655 mat1mhm 21678 scmatmhm 21728 mdet0pr 21786 mdetunilem7 21812 smadiadetlem4 21863 mat2pmatmhm 21927 pm2mpmhm 22014 chfacfscmulgsum 22054 chfacfpmmulgsum 22058 cpmadugsumlemF 22070 efsubm 25752 amgmlem 26184 amgm 26185 wilthlem2 26263 wilthlem3 26264 dchrelbas3 26431 dchrzrh1 26437 dchrmulcl 26442 dchrn0 26443 dchrinvcl 26446 dchrfi 26448 dchrabs 26453 sumdchr2 26463 rpvmasum2 26705 psgnid 31409 cnmsgn0g 31458 altgnsg 31461 freshmansdream 31529 frobrhm 31530 znfermltl 31607 iistmd 31897 pwspjmhmmgpd 40304 pwsgprod 40306 evlsbagval 40312 mhphf 40322 isdomn3 41067 mon1psubm 41069 deg1mhm 41070 c0rhm 45528 c0rnghm 45529 amgmwlem 46564 amgmlemALT 46565 |
Copyright terms: Public domain | W3C validator |