| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| ringidval.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidval | ⊢ 1 = (0g‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ur 20091 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 2 | 1 | fveq1i 6859 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
| 3 | fnmgp 20051 | . . . . 5 ⊢ mulGrp Fn V | |
| 4 | fvco2 6958 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 6 | 2, 5 | eqtrid 2776 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 7 | 0g0 18591 | . . . 4 ⊢ ∅ = (0g‘∅) | |
| 8 | fvprc 6850 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
| 9 | fvprc 6850 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 10 | 9 | fveq2d 6862 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
| 11 | 7, 8, 10 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 15 | 14 | fveq2i 6861 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
| 16 | 12, 13, 15 | 3eqtr4i 2762 | 1 ⊢ 1 = (0g‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 ∘ ccom 5642 Fn wfn 6506 ‘cfv 6511 0gc0g 17402 mulGrpcmgp 20049 1rcur 20090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-1cn 11126 ax-addcl 11128 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-slot 17152 df-ndx 17164 df-base 17180 df-0g 17404 df-mgp 20050 df-ur 20091 |
| This theorem is referenced by: dfur2 20093 srgidcl 20108 srgidmlem 20110 issrgid 20113 srgpcomp 20127 srg1expzeq1 20134 srgbinom 20140 ringidcl 20174 ringidmlem 20177 isringid 20180 prds1 20232 pwspjmhmmgpd 20237 xpsring1d 20242 oppr1 20259 unitsubm 20295 rngidpropd 20324 dfrhm2 20383 isrhm2d 20396 rhm1 20398 c0rhm 20443 c0rnghm 20444 subrgsubm 20494 issubrg3 20509 isdomn3 20624 cnfldexp 21316 expmhm 21353 nn0srg 21354 rge0srg 21355 fermltlchr 21439 freshmansdream 21484 frobrhm 21485 assamulgscmlem1 21808 mplcoe3 21945 mplcoe5 21947 mplbas2 21949 evlslem1 21989 evlsgsummul 21999 mhppwdeg 22037 psdpw 22057 ply1scltm 22167 ply1idvr1 22181 lply1binomsc 22198 evls1gsummul 22212 evl1gsummul 22247 madetsumid 22348 mat1mhm 22371 scmatmhm 22421 mdet0pr 22479 mdetunilem7 22505 smadiadetlem4 22556 mat2pmatmhm 22620 pm2mpmhm 22707 chfacfscmulgsum 22747 chfacfpmmulgsum 22751 cpmadugsumlemF 22763 efsubm 26460 amgmlem 26900 amgm 26901 wilthlem2 26979 wilthlem3 26980 dchrelbas3 27149 dchrzrh1 27155 dchrmulcl 27160 dchrn0 27161 dchrinvcl 27164 dchrfi 27166 dchrabs 27171 sumdchr2 27181 rpvmasum2 27423 psgnid 33054 cnmsgn0g 33103 altgnsg 33106 urpropd 33183 isunit3 33192 elrgspnlem2 33194 erlbr2d 33215 erler 33216 rloccring 33221 rloc0g 33222 rloc1r 33223 rlocf1 33224 domnprodn0 33226 rrgsubm 33234 znfermltl 33337 unitprodclb 33360 ssdifidlprm 33429 rprmdvdspow 33504 rprmdvdsprod 33505 1arithidomlem1 33506 1arithidom 33508 1arithufdlem3 33517 1arithufdlem4 33518 dfufd2lem 33520 zringfrac 33525 ressply1evls1 33534 evl1deg1 33545 evl1deg2 33546 evl1deg3 33547 assarrginv 33632 evls1fldgencl 33665 iistmd 33892 aks6d1c1p6 42102 evl1gprodd 42105 idomnnzpownz 42120 idomnnzgmulnz 42121 aks6d1c5lem2 42126 deg1gprod 42128 deg1pow 42129 aks5lem2 42175 unitscyglem5 42187 domnexpgn0cl 42511 abvexp 42520 pwsgprod 42532 evlsvvvallem 42549 evlsvvval 42551 evlselv 42575 mhphf 42585 mon1psubm 43188 deg1mhm 43189 amgmwlem 49791 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |