| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| ringidval.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidval | ⊢ 1 = (0g‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ur 20098 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 2 | 1 | fveq1i 6823 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
| 3 | fnmgp 20058 | . . . . 5 ⊢ mulGrp Fn V | |
| 4 | fvco2 6919 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 6 | 2, 5 | eqtrid 2778 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 7 | 0g0 18569 | . . . 4 ⊢ ∅ = (0g‘∅) | |
| 8 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
| 9 | fvprc 6814 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 10 | 9 | fveq2d 6826 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
| 11 | 7, 8, 10 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 15 | 14 | fveq2i 6825 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
| 16 | 12, 13, 15 | 3eqtr4i 2764 | 1 ⊢ 1 = (0g‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4283 ∘ ccom 5620 Fn wfn 6476 ‘cfv 6481 0gc0g 17340 mulGrpcmgp 20056 1rcur 20097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-slot 17090 df-ndx 17102 df-base 17118 df-0g 17342 df-mgp 20057 df-ur 20098 |
| This theorem is referenced by: dfur2 20100 srgidcl 20115 srgidmlem 20117 issrgid 20120 srgpcomp 20134 srg1expzeq1 20141 srgbinom 20147 ringidcl 20181 ringidmlem 20184 isringid 20187 prds1 20239 pwspjmhmmgpd 20244 xpsring1d 20249 oppr1 20266 unitsubm 20302 rngidpropd 20331 dfrhm2 20390 isrhm2d 20402 rhm1 20404 c0rhm 20447 c0rnghm 20448 subrgsubm 20498 issubrg3 20513 isdomn3 20628 cnfldexp 21339 expmhm 21371 nn0srg 21372 rge0srg 21373 fermltlchr 21464 freshmansdream 21509 frobrhm 21510 assamulgscmlem1 21834 mplcoe3 21971 mplcoe5 21973 mplbas2 21975 evlslem1 22015 evlsgsummul 22025 mhppwdeg 22063 psdpw 22083 ply1scltm 22193 ply1idvr1 22207 lply1binomsc 22224 evls1gsummul 22238 evl1gsummul 22273 madetsumid 22374 mat1mhm 22397 scmatmhm 22447 mdet0pr 22505 mdetunilem7 22531 smadiadetlem4 22582 mat2pmatmhm 22646 pm2mpmhm 22733 chfacfscmulgsum 22773 chfacfpmmulgsum 22777 cpmadugsumlemF 22789 efsubm 26485 amgmlem 26925 amgm 26926 wilthlem2 27004 wilthlem3 27005 dchrelbas3 27174 dchrzrh1 27180 dchrmulcl 27185 dchrn0 27186 dchrinvcl 27189 dchrfi 27191 dchrabs 27196 sumdchr2 27206 rpvmasum2 27448 psgnid 33061 cnmsgn0g 33110 altgnsg 33113 urpropd 33194 isunit3 33203 elrgspnlem2 33205 erlbr2d 33226 erler 33227 rloccring 33232 rloc0g 33233 rloc1r 33234 rlocf1 33235 domnprodn0 33237 rrgsubm 33245 znfermltl 33326 unitprodclb 33349 ssdifidlprm 33418 rprmdvdspow 33493 rprmdvdsprod 33494 1arithidomlem1 33495 1arithidom 33497 1arithufdlem3 33506 1arithufdlem4 33507 dfufd2lem 33509 zringfrac 33514 ressply1evls1 33523 evl1deg1 33534 evl1deg2 33535 evl1deg3 33536 assarrginv 33644 evls1fldgencl 33678 iistmd 33910 aks6d1c1p6 42146 evl1gprodd 42149 idomnnzpownz 42164 idomnnzgmulnz 42165 aks6d1c5lem2 42170 deg1gprod 42172 deg1pow 42173 aks5lem2 42219 unitscyglem5 42231 domnexpgn0cl 42555 abvexp 42564 pwsgprod 42576 evlsvvvallem 42593 evlsvvval 42595 evlselv 42619 mhphf 42629 mon1psubm 43231 deg1mhm 43232 amgmwlem 49833 amgmlemALT 49834 |
| Copyright terms: Public domain | W3C validator |