Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidval | ⊢ 1 = (0g‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 19833 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
2 | 1 | fveq1i 6826 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
3 | fnmgp 19817 | . . . . 5 ⊢ mulGrp Fn V | |
4 | fvco2 6921 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
5 | 3, 4 | mpan 687 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
6 | 2, 5 | eqtrid 2788 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 0g0 18445 | . . . 4 ⊢ ∅ = (0g‘∅) | |
8 | fvprc 6817 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
9 | fvprc 6817 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
10 | 9 | fveq2d 6829 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
11 | 7, 8, 10 | 3eqtr4a 2802 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | 14 | fveq2i 6828 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
16 | 12, 13, 15 | 3eqtr4i 2774 | 1 ⊢ 1 = (0g‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4269 ∘ ccom 5624 Fn wfn 6474 ‘cfv 6479 0gc0g 17247 mulGrpcmgp 19815 1rcur 19832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-1cn 11030 ax-addcl 11032 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-ov 7340 df-om 7781 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-nn 12075 df-slot 16980 df-ndx 16992 df-base 17010 df-0g 17249 df-mgp 19816 df-ur 19833 |
This theorem is referenced by: dfur2 19835 srgidcl 19849 srgidmlem 19851 issrgid 19854 srgpcomp 19863 srg1expzeq1 19870 srgbinom 19876 ringidcl 19902 ringidmlem 19904 isringid 19907 prds1 19948 oppr1 19971 unitsubm 20007 rngidpropd 20032 dfrhm2 20056 isrhm2d 20068 rhm1 20070 subrgsubm 20142 issubrg3 20157 cnfldexp 20737 expmhm 20773 nn0srg 20774 rge0srg 20775 assamulgscmlem1 21209 mplcoe3 21345 mplcoe5 21347 mplbas2 21349 evlslem1 21398 evlsgsummul 21408 mhppwdeg 21446 ply1scltm 21558 lply1binomsc 21584 evls1gsummul 21597 evl1gsummul 21632 madetsumid 21716 mat1mhm 21739 scmatmhm 21789 mdet0pr 21847 mdetunilem7 21873 smadiadetlem4 21924 mat2pmatmhm 21988 pm2mpmhm 22075 chfacfscmulgsum 22115 chfacfpmmulgsum 22119 cpmadugsumlemF 22131 efsubm 25813 amgmlem 26245 amgm 26246 wilthlem2 26324 wilthlem3 26325 dchrelbas3 26492 dchrzrh1 26498 dchrmulcl 26503 dchrn0 26504 dchrinvcl 26507 dchrfi 26509 dchrabs 26514 sumdchr2 26524 rpvmasum2 26766 psgnid 31651 cnmsgn0g 31700 altgnsg 31703 freshmansdream 31771 frobrhm 31772 fermltlchr 31858 znfermltl 31859 iistmd 32150 pwspjmhmmgpd 40527 pwsgprod 40529 evlsbagval 40535 mhphf 40545 isdomn3 41292 mon1psubm 41294 deg1mhm 41295 c0rhm 45821 c0rnghm 45822 amgmwlem 46857 amgmlemALT 46858 |
Copyright terms: Public domain | W3C validator |