![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidval | ⊢ 1 = (0g‘𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 20200 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
2 | 1 | fveq1i 6908 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
3 | fnmgp 20154 | . . . . 5 ⊢ mulGrp Fn V | |
4 | fvco2 7006 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
6 | 2, 5 | eqtrid 2787 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 0g0 18690 | . . . 4 ⊢ ∅ = (0g‘∅) | |
8 | fvprc 6899 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
9 | fvprc 6899 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
10 | 9 | fveq2d 6911 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
11 | 7, 8, 10 | 3eqtr4a 2801 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | 14 | fveq2i 6910 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
16 | 12, 13, 15 | 3eqtr4i 2773 | 1 ⊢ 1 = (0g‘𝐺) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 ∘ ccom 5693 Fn wfn 6558 ‘cfv 6563 0gc0g 17486 mulGrpcmgp 20152 1rcur 20199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-1cn 11211 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-slot 17216 df-ndx 17228 df-base 17246 df-0g 17488 df-mgp 20153 df-ur 20200 |
This theorem is referenced by: dfur2 20202 srgidcl 20217 srgidmlem 20219 issrgid 20222 srgpcomp 20236 srg1expzeq1 20243 srgbinom 20249 ringidcl 20280 ringidmlem 20282 isringid 20285 prds1 20337 pwspjmhmmgpd 20342 xpsring1d 20347 oppr1 20367 unitsubm 20403 rngidpropd 20432 dfrhm2 20491 isrhm2d 20504 rhm1 20506 c0rhm 20551 c0rnghm 20552 subrgsubm 20602 issubrg3 20617 isdomn3 20732 cnfldexp 21435 expmhm 21472 nn0srg 21473 rge0srg 21474 fermltlchr 21562 freshmansdream 21611 frobrhm 21612 assamulgscmlem1 21937 mplcoe3 22074 mplcoe5 22076 mplbas2 22078 evlslem1 22124 evlsgsummul 22134 mhppwdeg 22172 ply1scltm 22300 ply1idvr1 22314 lply1binomsc 22331 evls1gsummul 22345 evl1gsummul 22380 madetsumid 22483 mat1mhm 22506 scmatmhm 22556 mdet0pr 22614 mdetunilem7 22640 smadiadetlem4 22691 mat2pmatmhm 22755 pm2mpmhm 22842 chfacfscmulgsum 22882 chfacfpmmulgsum 22886 cpmadugsumlemF 22898 efsubm 26608 amgmlem 27048 amgm 27049 wilthlem2 27127 wilthlem3 27128 dchrelbas3 27297 dchrzrh1 27303 dchrmulcl 27308 dchrn0 27309 dchrinvcl 27312 dchrfi 27314 dchrabs 27319 sumdchr2 27329 rpvmasum2 27571 psgnid 33100 cnmsgn0g 33149 altgnsg 33152 urpropd 33222 isunit3 33231 elrgspnlem2 33233 erlbr2d 33251 erler 33252 rloccring 33257 rloc0g 33258 rloc1r 33259 rlocf1 33260 domnprodn0 33262 rrgsubm 33268 znfermltl 33374 unitprodclb 33397 ssdifidlprm 33466 rprmdvdspow 33541 rprmdvdsprod 33542 1arithidomlem1 33543 1arithidom 33545 1arithufdlem3 33554 1arithufdlem4 33555 dfufd2lem 33557 zringfrac 33562 evl1deg1 33581 evl1deg2 33582 evl1deg3 33583 assarrginv 33664 evls1fldgencl 33695 iistmd 33863 aks6d1c1p6 42096 evl1gprodd 42099 idomnnzpownz 42114 idomnnzgmulnz 42115 aks6d1c5lem2 42120 deg1gprod 42122 deg1pow 42123 aks5lem2 42169 unitscyglem5 42181 domnexpgn0cl 42510 abvexp 42519 pwsgprod 42531 evlsvvvallem 42548 evlsvvval 42550 evlselv 42574 mhphf 42584 mon1psubm 43188 deg1mhm 43189 amgmwlem 49033 amgmlemALT 49034 |
Copyright terms: Public domain | W3C validator |