| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| ringidval.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidval | ⊢ 1 = (0g‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ur 20142 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 2 | 1 | fveq1i 6877 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
| 3 | fnmgp 20102 | . . . . 5 ⊢ mulGrp Fn V | |
| 4 | fvco2 6976 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 6 | 2, 5 | eqtrid 2782 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 7 | 0g0 18642 | . . . 4 ⊢ ∅ = (0g‘∅) | |
| 8 | fvprc 6868 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
| 9 | fvprc 6868 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 10 | 9 | fveq2d 6880 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
| 11 | 7, 8, 10 | 3eqtr4a 2796 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 15 | 14 | fveq2i 6879 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
| 16 | 12, 13, 15 | 3eqtr4i 2768 | 1 ⊢ 1 = (0g‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 ∘ ccom 5658 Fn wfn 6526 ‘cfv 6531 0gc0g 17453 mulGrpcmgp 20100 1rcur 20141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-slot 17201 df-ndx 17213 df-base 17229 df-0g 17455 df-mgp 20101 df-ur 20142 |
| This theorem is referenced by: dfur2 20144 srgidcl 20159 srgidmlem 20161 issrgid 20164 srgpcomp 20178 srg1expzeq1 20185 srgbinom 20191 ringidcl 20225 ringidmlem 20228 isringid 20231 prds1 20283 pwspjmhmmgpd 20288 xpsring1d 20293 oppr1 20310 unitsubm 20346 rngidpropd 20375 dfrhm2 20434 isrhm2d 20447 rhm1 20449 c0rhm 20494 c0rnghm 20495 subrgsubm 20545 issubrg3 20560 isdomn3 20675 cnfldexp 21367 expmhm 21404 nn0srg 21405 rge0srg 21406 fermltlchr 21490 freshmansdream 21535 frobrhm 21536 assamulgscmlem1 21859 mplcoe3 21996 mplcoe5 21998 mplbas2 22000 evlslem1 22040 evlsgsummul 22050 mhppwdeg 22088 psdpw 22108 ply1scltm 22218 ply1idvr1 22232 lply1binomsc 22249 evls1gsummul 22263 evl1gsummul 22298 madetsumid 22399 mat1mhm 22422 scmatmhm 22472 mdet0pr 22530 mdetunilem7 22556 smadiadetlem4 22607 mat2pmatmhm 22671 pm2mpmhm 22758 chfacfscmulgsum 22798 chfacfpmmulgsum 22802 cpmadugsumlemF 22814 efsubm 26512 amgmlem 26952 amgm 26953 wilthlem2 27031 wilthlem3 27032 dchrelbas3 27201 dchrzrh1 27207 dchrmulcl 27212 dchrn0 27213 dchrinvcl 27216 dchrfi 27218 dchrabs 27223 sumdchr2 27233 rpvmasum2 27475 psgnid 33108 cnmsgn0g 33157 altgnsg 33160 urpropd 33227 isunit3 33236 elrgspnlem2 33238 erlbr2d 33259 erler 33260 rloccring 33265 rloc0g 33266 rloc1r 33267 rlocf1 33268 domnprodn0 33270 rrgsubm 33278 znfermltl 33381 unitprodclb 33404 ssdifidlprm 33473 rprmdvdspow 33548 rprmdvdsprod 33549 1arithidomlem1 33550 1arithidom 33552 1arithufdlem3 33561 1arithufdlem4 33562 dfufd2lem 33564 zringfrac 33569 ressply1evls1 33578 evl1deg1 33589 evl1deg2 33590 evl1deg3 33591 assarrginv 33676 evls1fldgencl 33711 iistmd 33933 aks6d1c1p6 42127 evl1gprodd 42130 idomnnzpownz 42145 idomnnzgmulnz 42146 aks6d1c5lem2 42151 deg1gprod 42153 deg1pow 42154 aks5lem2 42200 unitscyglem5 42212 domnexpgn0cl 42546 abvexp 42555 pwsgprod 42567 evlsvvvallem 42584 evlsvvval 42586 evlselv 42610 mhphf 42620 mon1psubm 43223 deg1mhm 43224 amgmwlem 49666 amgmlemALT 49667 |
| Copyright terms: Public domain | W3C validator |