| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| ringidval.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidval | ⊢ 1 = (0g‘𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ur 20098 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 2 | 1 | fveq1i 6862 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
| 3 | fnmgp 20058 | . . . . 5 ⊢ mulGrp Fn V | |
| 4 | fvco2 6961 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 6 | 2, 5 | eqtrid 2777 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 7 | 0g0 18598 | . . . 4 ⊢ ∅ = (0g‘∅) | |
| 8 | fvprc 6853 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = ∅) | |
| 9 | fvprc 6853 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → (mulGrp‘𝑅) = ∅) | |
| 10 | 9 | fveq2d 6865 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (0g‘(mulGrp‘𝑅)) = (0g‘∅)) |
| 11 | 7, 8, 10 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 12 | 6, 11 | pm2.61i 182 | . 2 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 13 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 14 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 15 | 14 | fveq2i 6864 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
| 16 | 12, 13, 15 | 3eqtr4i 2763 | 1 ⊢ 1 = (0g‘𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4299 ∘ ccom 5645 Fn wfn 6509 ‘cfv 6514 0gc0g 17409 mulGrpcmgp 20056 1rcur 20097 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-addcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 df-slot 17159 df-ndx 17171 df-base 17187 df-0g 17411 df-mgp 20057 df-ur 20098 |
| This theorem is referenced by: dfur2 20100 srgidcl 20115 srgidmlem 20117 issrgid 20120 srgpcomp 20134 srg1expzeq1 20141 srgbinom 20147 ringidcl 20181 ringidmlem 20184 isringid 20187 prds1 20239 pwspjmhmmgpd 20244 xpsring1d 20249 oppr1 20266 unitsubm 20302 rngidpropd 20331 dfrhm2 20390 isrhm2d 20403 rhm1 20405 c0rhm 20450 c0rnghm 20451 subrgsubm 20501 issubrg3 20516 isdomn3 20631 cnfldexp 21323 expmhm 21360 nn0srg 21361 rge0srg 21362 fermltlchr 21446 freshmansdream 21491 frobrhm 21492 assamulgscmlem1 21815 mplcoe3 21952 mplcoe5 21954 mplbas2 21956 evlslem1 21996 evlsgsummul 22006 mhppwdeg 22044 psdpw 22064 ply1scltm 22174 ply1idvr1 22188 lply1binomsc 22205 evls1gsummul 22219 evl1gsummul 22254 madetsumid 22355 mat1mhm 22378 scmatmhm 22428 mdet0pr 22486 mdetunilem7 22512 smadiadetlem4 22563 mat2pmatmhm 22627 pm2mpmhm 22714 chfacfscmulgsum 22754 chfacfpmmulgsum 22758 cpmadugsumlemF 22770 efsubm 26467 amgmlem 26907 amgm 26908 wilthlem2 26986 wilthlem3 26987 dchrelbas3 27156 dchrzrh1 27162 dchrmulcl 27167 dchrn0 27168 dchrinvcl 27171 dchrfi 27173 dchrabs 27178 sumdchr2 27188 rpvmasum2 27430 psgnid 33061 cnmsgn0g 33110 altgnsg 33113 urpropd 33190 isunit3 33199 elrgspnlem2 33201 erlbr2d 33222 erler 33223 rloccring 33228 rloc0g 33229 rloc1r 33230 rlocf1 33231 domnprodn0 33233 rrgsubm 33241 znfermltl 33344 unitprodclb 33367 ssdifidlprm 33436 rprmdvdspow 33511 rprmdvdsprod 33512 1arithidomlem1 33513 1arithidom 33515 1arithufdlem3 33524 1arithufdlem4 33525 dfufd2lem 33527 zringfrac 33532 ressply1evls1 33541 evl1deg1 33552 evl1deg2 33553 evl1deg3 33554 assarrginv 33639 evls1fldgencl 33672 iistmd 33899 aks6d1c1p6 42109 evl1gprodd 42112 idomnnzpownz 42127 idomnnzgmulnz 42128 aks6d1c5lem2 42133 deg1gprod 42135 deg1pow 42136 aks5lem2 42182 unitscyglem5 42194 domnexpgn0cl 42518 abvexp 42527 pwsgprod 42539 evlsvvvallem 42556 evlsvvval 42558 evlselv 42582 mhphf 42592 mon1psubm 43195 deg1mhm 43196 amgmwlem 49795 amgmlemALT 49796 |
| Copyright terms: Public domain | W3C validator |