Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrrn Structured version   Visualization version   GIF version

Theorem ntrrn 39978
Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = (int‘𝐽)
Assertion
Ref Expression
ntrrn (𝐽 ∈ Top → ran 𝐼𝐽)

Proof of Theorem ntrrn
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ntrrn.i . . 3 𝐼 = (int‘𝐽)
21rneqi 5696 . 2 ran 𝐼 = ran (int‘𝐽)
3 vpwex 5176 . . . . . . . 8 𝒫 𝑠 ∈ V
43inex2 5120 . . . . . . 7 (𝐽 ∩ 𝒫 𝑠) ∈ V
54uniex 7330 . . . . . 6 (𝐽 ∩ 𝒫 𝑠) ∈ V
65rgenw 3119 . . . . 5 𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠) ∈ V
7 nfcv 2951 . . . . . 6 𝑠𝒫 𝑋
87fnmptf 6359 . . . . 5 (∀𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠) ∈ V → (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
96, 8mp1i 13 . . . 4 (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
10 ntrrn.x . . . . . 6 𝑋 = 𝐽
1110ntrfval 21320 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
1211fneq1d 6323 . . . 4 (𝐽 ∈ Top → ((int‘𝐽) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
139, 12mpbird 258 . . 3 (𝐽 ∈ Top → (int‘𝐽) Fn 𝒫 𝑋)
14 elpwi 4469 . . . . 5 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
1510ntropn 21345 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠𝑋) → ((int‘𝐽)‘𝑠) ∈ 𝐽)
1615ex 413 . . . . 5 (𝐽 ∈ Top → (𝑠𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽))
1714, 16syl5 34 . . . 4 (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽))
1817ralrimiv 3150 . . 3 (𝐽 ∈ Top → ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽)
19 fnfvrnss 6754 . . 3 (((int‘𝐽) Fn 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) → ran (int‘𝐽) ⊆ 𝐽)
2013, 18, 19syl2anc 584 . 2 (𝐽 ∈ Top → ran (int‘𝐽) ⊆ 𝐽)
212, 20eqsstrid 3942 1 (𝐽 ∈ Top → ran 𝐼𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1525  wcel 2083  wral 3107  Vcvv 3440  cin 3864  wss 3865  𝒫 cpw 4459   cuni 4751  cmpt 5047  ran crn 5451   Fn wfn 6227  cfv 6232  Topctop 21189  intcnt 21313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-id 5355  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-top 21190  df-ntr 21316
This theorem is referenced by:  ntrf  39979
  Copyright terms: Public domain W3C validator