Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrrn Structured version   Visualization version   GIF version

Theorem ntrrn 43387
Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = βˆͺ 𝐽
ntrrn.i 𝐼 = (intβ€˜π½)
Assertion
Ref Expression
ntrrn (𝐽 ∈ Top β†’ ran 𝐼 βŠ† 𝐽)

Proof of Theorem ntrrn
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ntrrn.i . . 3 𝐼 = (intβ€˜π½)
21rneqi 5927 . 2 ran 𝐼 = ran (intβ€˜π½)
3 vpwex 5366 . . . . . . . 8 𝒫 𝑠 ∈ V
43inex2 5309 . . . . . . 7 (𝐽 ∩ 𝒫 𝑠) ∈ V
54uniex 7725 . . . . . 6 βˆͺ (𝐽 ∩ 𝒫 𝑠) ∈ V
65rgenw 3057 . . . . 5 βˆ€π‘  ∈ 𝒫 𝑋βˆͺ (𝐽 ∩ 𝒫 𝑠) ∈ V
7 nfcv 2895 . . . . . 6 Ⅎ𝑠𝒫 𝑋
87fnmptf 6677 . . . . 5 (βˆ€π‘  ∈ 𝒫 𝑋βˆͺ (𝐽 ∩ 𝒫 𝑠) ∈ V β†’ (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
96, 8mp1i 13 . . . 4 (𝐽 ∈ Top β†’ (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
10 ntrrn.x . . . . . 6 𝑋 = βˆͺ 𝐽
1110ntrfval 22852 . . . . 5 (𝐽 ∈ Top β†’ (intβ€˜π½) = (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)))
1211fneq1d 6633 . . . 4 (𝐽 ∈ Top β†’ ((intβ€˜π½) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
139, 12mpbird 257 . . 3 (𝐽 ∈ Top β†’ (intβ€˜π½) Fn 𝒫 𝑋)
14 elpwi 4602 . . . . 5 (𝑠 ∈ 𝒫 𝑋 β†’ 𝑠 βŠ† 𝑋)
1510ntropn 22877 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘ ) ∈ 𝐽)
1615ex 412 . . . . 5 (𝐽 ∈ Top β†’ (𝑠 βŠ† 𝑋 β†’ ((intβ€˜π½)β€˜π‘ ) ∈ 𝐽))
1714, 16syl5 34 . . . 4 (𝐽 ∈ Top β†’ (𝑠 ∈ 𝒫 𝑋 β†’ ((intβ€˜π½)β€˜π‘ ) ∈ 𝐽))
1817ralrimiv 3137 . . 3 (𝐽 ∈ Top β†’ βˆ€π‘  ∈ 𝒫 𝑋((intβ€˜π½)β€˜π‘ ) ∈ 𝐽)
19 fnfvrnss 7113 . . 3 (((intβ€˜π½) Fn 𝒫 𝑋 ∧ βˆ€π‘  ∈ 𝒫 𝑋((intβ€˜π½)β€˜π‘ ) ∈ 𝐽) β†’ ran (intβ€˜π½) βŠ† 𝐽)
2013, 18, 19syl2anc 583 . 2 (𝐽 ∈ Top β†’ ran (intβ€˜π½) βŠ† 𝐽)
212, 20eqsstrid 4023 1 (𝐽 ∈ Top β†’ ran 𝐼 βŠ† 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  Vcvv 3466   ∩ cin 3940   βŠ† wss 3941  π’« cpw 4595  βˆͺ cuni 4900   ↦ cmpt 5222  ran crn 5668   Fn wfn 6529  β€˜cfv 6534  Topctop 22719  intcnt 22845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-top 22720  df-ntr 22848
This theorem is referenced by:  ntrf  43388
  Copyright terms: Public domain W3C validator