| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrrn | Structured version Visualization version GIF version | ||
| Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
| ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
| Ref | Expression |
|---|---|
| ntrrn | ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrrn.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
| 2 | 1 | rneqi 5930 | . 2 ⊢ ran 𝐼 = ran (int‘𝐽) |
| 3 | vpwex 5359 | . . . . . . . 8 ⊢ 𝒫 𝑠 ∈ V | |
| 4 | 3 | inex2 5300 | . . . . . . 7 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 5 | 4 | uniex 7744 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 6 | 5 | rgenw 3054 | . . . . 5 ⊢ ∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 7 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑠𝒫 𝑋 | |
| 8 | 7 | fnmptf 6685 | . . . . 5 ⊢ (∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
| 9 | 6, 8 | mp1i 13 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
| 10 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 11 | 10 | ntrfval 22997 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
| 12 | 11 | fneq1d 6642 | . . . 4 ⊢ (𝐽 ∈ Top → ((int‘𝐽) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
| 13 | 9, 12 | mpbird 257 | . . 3 ⊢ (𝐽 ∈ Top → (int‘𝐽) Fn 𝒫 𝑋) |
| 14 | elpwi 4589 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
| 15 | 10 | ntropn 23022 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ 𝑋) → ((int‘𝐽)‘𝑠) ∈ 𝐽) |
| 16 | 15 | ex 412 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑠 ⊆ 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
| 17 | 14, 16 | syl5 34 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
| 18 | 17 | ralrimiv 3132 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) |
| 19 | fnfvrnss 7122 | . . 3 ⊢ (((int‘𝐽) Fn 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) → ran (int‘𝐽) ⊆ 𝐽) | |
| 20 | 13, 18, 19 | syl2anc 584 | . 2 ⊢ (𝐽 ∈ Top → ran (int‘𝐽) ⊆ 𝐽) |
| 21 | 2, 20 | eqsstrid 4004 | 1 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3464 ∩ cin 3932 ⊆ wss 3933 𝒫 cpw 4582 ∪ cuni 4889 ↦ cmpt 5207 ran crn 5668 Fn wfn 6537 ‘cfv 6542 Topctop 22866 intcnt 22990 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-top 22867 df-ntr 22993 |
| This theorem is referenced by: ntrf 44081 |
| Copyright terms: Public domain | W3C validator |