![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrrn | Structured version Visualization version GIF version |
Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
Ref | Expression |
---|---|
ntrrn | ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrrn.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
2 | 1 | rneqi 5962 | . 2 ⊢ ran 𝐼 = ran (int‘𝐽) |
3 | vpwex 5395 | . . . . . . . 8 ⊢ 𝒫 𝑠 ∈ V | |
4 | 3 | inex2 5336 | . . . . . . 7 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
5 | 4 | uniex 7776 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
6 | 5 | rgenw 3071 | . . . . 5 ⊢ ∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
7 | nfcv 2908 | . . . . . 6 ⊢ Ⅎ𝑠𝒫 𝑋 | |
8 | 7 | fnmptf 6716 | . . . . 5 ⊢ (∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
9 | 6, 8 | mp1i 13 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
10 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
11 | 10 | ntrfval 23053 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
12 | 11 | fneq1d 6672 | . . . 4 ⊢ (𝐽 ∈ Top → ((int‘𝐽) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
13 | 9, 12 | mpbird 257 | . . 3 ⊢ (𝐽 ∈ Top → (int‘𝐽) Fn 𝒫 𝑋) |
14 | elpwi 4629 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
15 | 10 | ntropn 23078 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ 𝑋) → ((int‘𝐽)‘𝑠) ∈ 𝐽) |
16 | 15 | ex 412 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑠 ⊆ 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
17 | 14, 16 | syl5 34 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
18 | 17 | ralrimiv 3151 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) |
19 | fnfvrnss 7155 | . . 3 ⊢ (((int‘𝐽) Fn 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) → ran (int‘𝐽) ⊆ 𝐽) | |
20 | 13, 18, 19 | syl2anc 583 | . 2 ⊢ (𝐽 ∈ Top → ran (int‘𝐽) ⊆ 𝐽) |
21 | 2, 20 | eqsstrid 4057 | 1 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ↦ cmpt 5249 ran crn 5701 Fn wfn 6568 ‘cfv 6573 Topctop 22920 intcnt 23046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-ntr 23049 |
This theorem is referenced by: ntrf 44085 |
Copyright terms: Public domain | W3C validator |