Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrrn Structured version   Visualization version   GIF version

Theorem ntrrn 42863
Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = βˆͺ 𝐽
ntrrn.i 𝐼 = (intβ€˜π½)
Assertion
Ref Expression
ntrrn (𝐽 ∈ Top β†’ ran 𝐼 βŠ† 𝐽)

Proof of Theorem ntrrn
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ntrrn.i . . 3 𝐼 = (intβ€˜π½)
21rneqi 5936 . 2 ran 𝐼 = ran (intβ€˜π½)
3 vpwex 5375 . . . . . . . 8 𝒫 𝑠 ∈ V
43inex2 5318 . . . . . . 7 (𝐽 ∩ 𝒫 𝑠) ∈ V
54uniex 7730 . . . . . 6 βˆͺ (𝐽 ∩ 𝒫 𝑠) ∈ V
65rgenw 3065 . . . . 5 βˆ€π‘  ∈ 𝒫 𝑋βˆͺ (𝐽 ∩ 𝒫 𝑠) ∈ V
7 nfcv 2903 . . . . . 6 Ⅎ𝑠𝒫 𝑋
87fnmptf 6686 . . . . 5 (βˆ€π‘  ∈ 𝒫 𝑋βˆͺ (𝐽 ∩ 𝒫 𝑠) ∈ V β†’ (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
96, 8mp1i 13 . . . 4 (𝐽 ∈ Top β†’ (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
10 ntrrn.x . . . . . 6 𝑋 = βˆͺ 𝐽
1110ntrfval 22527 . . . . 5 (𝐽 ∈ Top β†’ (intβ€˜π½) = (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)))
1211fneq1d 6642 . . . 4 (𝐽 ∈ Top β†’ ((intβ€˜π½) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
139, 12mpbird 256 . . 3 (𝐽 ∈ Top β†’ (intβ€˜π½) Fn 𝒫 𝑋)
14 elpwi 4609 . . . . 5 (𝑠 ∈ 𝒫 𝑋 β†’ 𝑠 βŠ† 𝑋)
1510ntropn 22552 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘ ) ∈ 𝐽)
1615ex 413 . . . . 5 (𝐽 ∈ Top β†’ (𝑠 βŠ† 𝑋 β†’ ((intβ€˜π½)β€˜π‘ ) ∈ 𝐽))
1714, 16syl5 34 . . . 4 (𝐽 ∈ Top β†’ (𝑠 ∈ 𝒫 𝑋 β†’ ((intβ€˜π½)β€˜π‘ ) ∈ 𝐽))
1817ralrimiv 3145 . . 3 (𝐽 ∈ Top β†’ βˆ€π‘  ∈ 𝒫 𝑋((intβ€˜π½)β€˜π‘ ) ∈ 𝐽)
19 fnfvrnss 7119 . . 3 (((intβ€˜π½) Fn 𝒫 𝑋 ∧ βˆ€π‘  ∈ 𝒫 𝑋((intβ€˜π½)β€˜π‘ ) ∈ 𝐽) β†’ ran (intβ€˜π½) βŠ† 𝐽)
2013, 18, 19syl2anc 584 . 2 (𝐽 ∈ Top β†’ ran (intβ€˜π½) βŠ† 𝐽)
212, 20eqsstrid 4030 1 (𝐽 ∈ Top β†’ ran 𝐼 βŠ† 𝐽)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  Vcvv 3474   ∩ cin 3947   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908   ↦ cmpt 5231  ran crn 5677   Fn wfn 6538  β€˜cfv 6543  Topctop 22394  intcnt 22520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22395  df-ntr 22523
This theorem is referenced by:  ntrf  42864
  Copyright terms: Public domain W3C validator