| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrrn | Structured version Visualization version GIF version | ||
| Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
| Ref | Expression |
|---|---|
| ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
| ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
| Ref | Expression |
|---|---|
| ntrrn | ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrrn.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
| 2 | 1 | rneqi 5903 | . 2 ⊢ ran 𝐼 = ran (int‘𝐽) |
| 3 | vpwex 5334 | . . . . . . . 8 ⊢ 𝒫 𝑠 ∈ V | |
| 4 | 3 | inex2 5275 | . . . . . . 7 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 5 | 4 | uniex 7719 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 6 | 5 | rgenw 3049 | . . . . 5 ⊢ ∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
| 7 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑠𝒫 𝑋 | |
| 8 | 7 | fnmptf 6656 | . . . . 5 ⊢ (∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
| 9 | 6, 8 | mp1i 13 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
| 10 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
| 11 | 10 | ntrfval 22917 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
| 12 | 11 | fneq1d 6613 | . . . 4 ⊢ (𝐽 ∈ Top → ((int‘𝐽) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
| 13 | 9, 12 | mpbird 257 | . . 3 ⊢ (𝐽 ∈ Top → (int‘𝐽) Fn 𝒫 𝑋) |
| 14 | elpwi 4572 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
| 15 | 10 | ntropn 22942 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ 𝑋) → ((int‘𝐽)‘𝑠) ∈ 𝐽) |
| 16 | 15 | ex 412 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑠 ⊆ 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
| 17 | 14, 16 | syl5 34 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
| 18 | 17 | ralrimiv 3125 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) |
| 19 | fnfvrnss 7095 | . . 3 ⊢ (((int‘𝐽) Fn 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) → ran (int‘𝐽) ⊆ 𝐽) | |
| 20 | 13, 18, 19 | syl2anc 584 | . 2 ⊢ (𝐽 ∈ Top → ran (int‘𝐽) ⊆ 𝐽) |
| 21 | 2, 20 | eqsstrid 3987 | 1 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ∩ cin 3915 ⊆ wss 3916 𝒫 cpw 4565 ∪ cuni 4873 ↦ cmpt 5190 ran crn 5641 Fn wfn 6508 ‘cfv 6513 Topctop 22786 intcnt 22910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-top 22787 df-ntr 22913 |
| This theorem is referenced by: ntrf 44105 |
| Copyright terms: Public domain | W3C validator |