Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrrn | Structured version Visualization version GIF version |
Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
Ref | Expression |
---|---|
ntrrn.x | ⊢ 𝑋 = ∪ 𝐽 |
ntrrn.i | ⊢ 𝐼 = (int‘𝐽) |
Ref | Expression |
---|---|
ntrrn | ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrrn.i | . . 3 ⊢ 𝐼 = (int‘𝐽) | |
2 | 1 | rneqi 5846 | . 2 ⊢ ran 𝐼 = ran (int‘𝐽) |
3 | vpwex 5300 | . . . . . . . 8 ⊢ 𝒫 𝑠 ∈ V | |
4 | 3 | inex2 5242 | . . . . . . 7 ⊢ (𝐽 ∩ 𝒫 𝑠) ∈ V |
5 | 4 | uniex 7594 | . . . . . 6 ⊢ ∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
6 | 5 | rgenw 3076 | . . . . 5 ⊢ ∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V |
7 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑠𝒫 𝑋 | |
8 | 7 | fnmptf 6569 | . . . . 5 ⊢ (∀𝑠 ∈ 𝒫 𝑋∪ (𝐽 ∩ 𝒫 𝑠) ∈ V → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
9 | 6, 8 | mp1i 13 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋) |
10 | ntrrn.x | . . . . . 6 ⊢ 𝑋 = ∪ 𝐽 | |
11 | 10 | ntrfval 22175 | . . . . 5 ⊢ (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠))) |
12 | 11 | fneq1d 6526 | . . . 4 ⊢ (𝐽 ∈ Top → ((int‘𝐽) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 ↦ ∪ (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)) |
13 | 9, 12 | mpbird 256 | . . 3 ⊢ (𝐽 ∈ Top → (int‘𝐽) Fn 𝒫 𝑋) |
14 | elpwi 4542 | . . . . 5 ⊢ (𝑠 ∈ 𝒫 𝑋 → 𝑠 ⊆ 𝑋) | |
15 | 10 | ntropn 22200 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑠 ⊆ 𝑋) → ((int‘𝐽)‘𝑠) ∈ 𝐽) |
16 | 15 | ex 413 | . . . . 5 ⊢ (𝐽 ∈ Top → (𝑠 ⊆ 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
17 | 14, 16 | syl5 34 | . . . 4 ⊢ (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽)) |
18 | 17 | ralrimiv 3102 | . . 3 ⊢ (𝐽 ∈ Top → ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) |
19 | fnfvrnss 6994 | . . 3 ⊢ (((int‘𝐽) Fn 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) → ran (int‘𝐽) ⊆ 𝐽) | |
20 | 13, 18, 19 | syl2anc 584 | . 2 ⊢ (𝐽 ∈ Top → ran (int‘𝐽) ⊆ 𝐽) |
21 | 2, 20 | eqsstrid 3969 | 1 ⊢ (𝐽 ∈ Top → ran 𝐼 ⊆ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 𝒫 cpw 4533 ∪ cuni 4839 ↦ cmpt 5157 ran crn 5590 Fn wfn 6428 ‘cfv 6433 Topctop 22042 intcnt 22168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-top 22043 df-ntr 22171 |
This theorem is referenced by: ntrf 41733 |
Copyright terms: Public domain | W3C validator |