Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrrn Structured version   Visualization version   GIF version

Theorem ntrrn 44242
Description: The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.)
Hypotheses
Ref Expression
ntrrn.x 𝑋 = 𝐽
ntrrn.i 𝐼 = (int‘𝐽)
Assertion
Ref Expression
ntrrn (𝐽 ∈ Top → ran 𝐼𝐽)

Proof of Theorem ntrrn
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 ntrrn.i . . 3 𝐼 = (int‘𝐽)
21rneqi 5883 . 2 ran 𝐼 = ran (int‘𝐽)
3 vpwex 5319 . . . . . . . 8 𝒫 𝑠 ∈ V
43inex2 5260 . . . . . . 7 (𝐽 ∩ 𝒫 𝑠) ∈ V
54uniex 7682 . . . . . 6 (𝐽 ∩ 𝒫 𝑠) ∈ V
65rgenw 3052 . . . . 5 𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠) ∈ V
7 nfcv 2895 . . . . . 6 𝑠𝒫 𝑋
87fnmptf 6624 . . . . 5 (∀𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠) ∈ V → (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
96, 8mp1i 13 . . . 4 (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋)
10 ntrrn.x . . . . . 6 𝑋 = 𝐽
1110ntrfval 22942 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)))
1211fneq1d 6581 . . . 4 (𝐽 ∈ Top → ((int‘𝐽) Fn 𝒫 𝑋 ↔ (𝑠 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑠)) Fn 𝒫 𝑋))
139, 12mpbird 257 . . 3 (𝐽 ∈ Top → (int‘𝐽) Fn 𝒫 𝑋)
14 elpwi 4558 . . . . 5 (𝑠 ∈ 𝒫 𝑋𝑠𝑋)
1510ntropn 22967 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑠𝑋) → ((int‘𝐽)‘𝑠) ∈ 𝐽)
1615ex 412 . . . . 5 (𝐽 ∈ Top → (𝑠𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽))
1714, 16syl5 34 . . . 4 (𝐽 ∈ Top → (𝑠 ∈ 𝒫 𝑋 → ((int‘𝐽)‘𝑠) ∈ 𝐽))
1817ralrimiv 3124 . . 3 (𝐽 ∈ Top → ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽)
19 fnfvrnss 7062 . . 3 (((int‘𝐽) Fn 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋((int‘𝐽)‘𝑠) ∈ 𝐽) → ran (int‘𝐽) ⊆ 𝐽)
2013, 18, 19syl2anc 584 . 2 (𝐽 ∈ Top → ran (int‘𝐽) ⊆ 𝐽)
212, 20eqsstrid 3969 1 (𝐽 ∈ Top → ran 𝐼𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cin 3897  wss 3898  𝒫 cpw 4551   cuni 4860  cmpt 5176  ran crn 5622   Fn wfn 6483  cfv 6488  Topctop 22811  intcnt 22935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-top 22812  df-ntr 22938
This theorem is referenced by:  ntrf  44243
  Copyright terms: Public domain W3C validator