Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapntrcls Structured version   Visualization version   GIF version

Theorem dssmapntrcls 42879
Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 34198. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x 𝑋 = βˆͺ 𝐽
dssmapclsntr.k 𝐾 = (clsβ€˜π½)
dssmapclsntr.i 𝐼 = (intβ€˜π½)
dssmapclsntr.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– (π‘“β€˜(𝑏 βˆ– 𝑠))))))
dssmapclsntr.d 𝐷 = (π‘‚β€˜π‘‹)
Assertion
Ref Expression
dssmapntrcls (𝐽 ∈ Top β†’ 𝐼 = (π·β€˜πΎ))
Distinct variable groups:   𝐽,𝑏,𝑓,𝑠   𝑓,𝐾,𝑠   𝑋,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝐼(𝑓,𝑠,𝑏)   𝐾(𝑏)   𝑂(𝑓,𝑠,𝑏)

Proof of Theorem dssmapntrcls
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 vpwex 5376 . . . . . . 7 𝒫 𝑑 ∈ V
21inex2 5319 . . . . . 6 (𝐽 ∩ 𝒫 𝑑) ∈ V
32uniex 7731 . . . . 5 βˆͺ (𝐽 ∩ 𝒫 𝑑) ∈ V
43rgenw 3066 . . . 4 βˆ€π‘‘ ∈ 𝒫 𝑋βˆͺ (𝐽 ∩ 𝒫 𝑑) ∈ V
5 nfcv 2904 . . . . 5 Ⅎ𝑑𝒫 𝑋
65fnmptf 6687 . . . 4 (βˆ€π‘‘ ∈ 𝒫 𝑋βˆͺ (𝐽 ∩ 𝒫 𝑑) ∈ V β†’ (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)) Fn 𝒫 𝑋)
74, 6mp1i 13 . . 3 (𝐽 ∈ Top β†’ (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)) Fn 𝒫 𝑋)
8 dssmapclsntr.i . . . . 5 𝐼 = (intβ€˜π½)
9 dssmapclsntr.x . . . . . 6 𝑋 = βˆͺ 𝐽
109ntrfval 22528 . . . . 5 (𝐽 ∈ Top β†’ (intβ€˜π½) = (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)))
118, 10eqtrid 2785 . . . 4 (𝐽 ∈ Top β†’ 𝐼 = (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)))
1211fneq1d 6643 . . 3 (𝐽 ∈ Top β†’ (𝐼 Fn 𝒫 𝑋 ↔ (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)) Fn 𝒫 𝑋))
137, 12mpbird 257 . 2 (𝐽 ∈ Top β†’ 𝐼 Fn 𝒫 𝑋)
14 dssmapclsntr.o . . . . . 6 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– (π‘“β€˜(𝑏 βˆ– 𝑠))))))
15 dssmapclsntr.d . . . . . 6 𝐷 = (π‘‚β€˜π‘‹)
169topopn 22408 . . . . . 6 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
1714, 15, 16dssmapf1od 42772 . . . . 5 (𝐽 ∈ Top β†’ 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-ontoβ†’(𝒫 𝑋 ↑m 𝒫 𝑋))
18 f1of 6834 . . . . 5 (𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-ontoβ†’(𝒫 𝑋 ↑m 𝒫 𝑋) β†’ 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)⟢(𝒫 𝑋 ↑m 𝒫 𝑋))
1917, 18syl 17 . . . 4 (𝐽 ∈ Top β†’ 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)⟢(𝒫 𝑋 ↑m 𝒫 𝑋))
20 dssmapclsntr.k . . . . 5 𝐾 = (clsβ€˜π½)
219, 20clselmap 42878 . . . 4 (𝐽 ∈ Top β†’ 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋))
2219, 21ffvelcdmd 7088 . . 3 (𝐽 ∈ Top β†’ (π·β€˜πΎ) ∈ (𝒫 𝑋 ↑m 𝒫 𝑋))
23 elmapfn 8859 . . 3 ((π·β€˜πΎ) ∈ (𝒫 𝑋 ↑m 𝒫 𝑋) β†’ (π·β€˜πΎ) Fn 𝒫 𝑋)
2422, 23syl 17 . 2 (𝐽 ∈ Top β†’ (π·β€˜πΎ) Fn 𝒫 𝑋)
25 elpwi 4610 . . . . 5 (𝑑 ∈ 𝒫 𝑋 β†’ 𝑑 βŠ† 𝑋)
269ntrval2 22555 . . . . 5 ((𝐽 ∈ Top ∧ 𝑑 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘‘) = (𝑋 βˆ– ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝑑))))
2725, 26sylan2 594 . . . 4 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ ((intβ€˜π½)β€˜π‘‘) = (𝑋 βˆ– ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝑑))))
288fveq1i 6893 . . . 4 (πΌβ€˜π‘‘) = ((intβ€˜π½)β€˜π‘‘)
2920fveq1i 6893 . . . . 5 (πΎβ€˜(𝑋 βˆ– 𝑑)) = ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝑑))
3029difeq2i 4120 . . . 4 (𝑋 βˆ– (πΎβ€˜(𝑋 βˆ– 𝑑))) = (𝑋 βˆ– ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝑑)))
3127, 28, 303eqtr4g 2798 . . 3 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ (πΌβ€˜π‘‘) = (𝑋 βˆ– (πΎβ€˜(𝑋 βˆ– 𝑑))))
3216adantr 482 . . . 4 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ 𝑋 ∈ 𝐽)
3321adantr 482 . . . 4 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋))
34 eqid 2733 . . . 4 (π·β€˜πΎ) = (π·β€˜πΎ)
35 simpr 486 . . . 4 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ 𝑑 ∈ 𝒫 𝑋)
36 eqid 2733 . . . 4 ((π·β€˜πΎ)β€˜π‘‘) = ((π·β€˜πΎ)β€˜π‘‘)
3714, 15, 32, 33, 34, 35, 36dssmapfv3d 42770 . . 3 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ ((π·β€˜πΎ)β€˜π‘‘) = (𝑋 βˆ– (πΎβ€˜(𝑋 βˆ– 𝑑))))
3831, 37eqtr4d 2776 . 2 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ (πΌβ€˜π‘‘) = ((π·β€˜πΎ)β€˜π‘‘))
3913, 24, 38eqfnfvd 7036 1 (𝐽 ∈ Top β†’ 𝐼 = (π·β€˜πΎ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3062  Vcvv 3475   βˆ– cdif 3946   ∩ cin 3948   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909   ↦ cmpt 5232   Fn wfn 6539  βŸΆwf 6540  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  (class class class)co 7409   ↑m cmap 8820  Topctop 22395  intcnt 22521  clsccl 22522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-top 22396  df-cld 22523  df-ntr 22524  df-cls 22525
This theorem is referenced by:  dssmapclsntr  42880
  Copyright terms: Public domain W3C validator