Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapntrcls Structured version   Visualization version   GIF version

Theorem dssmapntrcls 38950
Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 31527. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x 𝑋 = 𝐽
dssmapclsntr.k 𝐾 = (cls‘𝐽)
dssmapclsntr.i 𝐼 = (int‘𝐽)
dssmapclsntr.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏𝑚 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapclsntr.d 𝐷 = (𝑂𝑋)
Assertion
Ref Expression
dssmapntrcls (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
Distinct variable groups:   𝐽,𝑏,𝑓,𝑠   𝑓,𝐾,𝑠   𝑋,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝐼(𝑓,𝑠,𝑏)   𝐾(𝑏)   𝑂(𝑓,𝑠,𝑏)

Proof of Theorem dssmapntrcls
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 vpwex 4980 . . . . . . 7 𝒫 𝑡 ∈ V
21inex2 4935 . . . . . 6 (𝐽 ∩ 𝒫 𝑡) ∈ V
32uniex 7104 . . . . 5 (𝐽 ∩ 𝒫 𝑡) ∈ V
43rgenw 3073 . . . 4 𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡) ∈ V
5 nfcv 2913 . . . . 5 𝑡𝒫 𝑋
65fnmptf 6155 . . . 4 (∀𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡) ∈ V → (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋)
74, 6mp1i 13 . . 3 (𝐽 ∈ Top → (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋)
8 dssmapclsntr.i . . . . 5 𝐼 = (int‘𝐽)
9 dssmapclsntr.x . . . . . 6 𝑋 = 𝐽
109ntrfval 21049 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)))
118, 10syl5eq 2817 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)))
1211fneq1d 6120 . . 3 (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋))
137, 12mpbird 247 . 2 (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋)
14 dssmapclsntr.o . . . . . 6 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏𝑚 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
15 dssmapclsntr.d . . . . . 6 𝐷 = (𝑂𝑋)
169topopn 20931 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
1714, 15, 16dssmapf1od 38839 . . . . 5 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋𝑚 𝒫 𝑋)–1-1-onto→(𝒫 𝑋𝑚 𝒫 𝑋))
18 f1of 6279 . . . . 5 (𝐷:(𝒫 𝑋𝑚 𝒫 𝑋)–1-1-onto→(𝒫 𝑋𝑚 𝒫 𝑋) → 𝐷:(𝒫 𝑋𝑚 𝒫 𝑋)⟶(𝒫 𝑋𝑚 𝒫 𝑋))
1917, 18syl 17 . . . 4 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋𝑚 𝒫 𝑋)⟶(𝒫 𝑋𝑚 𝒫 𝑋))
20 dssmapclsntr.k . . . . 5 𝐾 = (cls‘𝐽)
219, 20clselmap 38949 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋𝑚 𝒫 𝑋))
2219, 21ffvelrnd 6505 . . 3 (𝐽 ∈ Top → (𝐷𝐾) ∈ (𝒫 𝑋𝑚 𝒫 𝑋))
23 elmapfn 8036 . . 3 ((𝐷𝐾) ∈ (𝒫 𝑋𝑚 𝒫 𝑋) → (𝐷𝐾) Fn 𝒫 𝑋)
2422, 23syl 17 . 2 (𝐽 ∈ Top → (𝐷𝐾) Fn 𝒫 𝑋)
25 elpwi 4308 . . . . 5 (𝑡 ∈ 𝒫 𝑋𝑡𝑋)
269ntrval2 21076 . . . . 5 ((𝐽 ∈ Top ∧ 𝑡𝑋) → ((int‘𝐽)‘𝑡) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡))))
2725, 26sylan2 580 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → ((int‘𝐽)‘𝑡) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡))))
288fveq1i 6334 . . . 4 (𝐼𝑡) = ((int‘𝐽)‘𝑡)
2920fveq1i 6334 . . . . 5 (𝐾‘(𝑋𝑡)) = ((cls‘𝐽)‘(𝑋𝑡))
3029difeq2i 3876 . . . 4 (𝑋 ∖ (𝐾‘(𝑋𝑡))) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡)))
3127, 28, 303eqtr4g 2830 . . 3 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → (𝐼𝑡) = (𝑋 ∖ (𝐾‘(𝑋𝑡))))
3216adantr 466 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝑋𝐽)
3321adantr 466 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝐾 ∈ (𝒫 𝑋𝑚 𝒫 𝑋))
34 eqid 2771 . . . 4 (𝐷𝐾) = (𝐷𝐾)
35 simpr 471 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝑡 ∈ 𝒫 𝑋)
36 eqid 2771 . . . 4 ((𝐷𝐾)‘𝑡) = ((𝐷𝐾)‘𝑡)
3714, 15, 32, 33, 34, 35, 36dssmapfv3d 38837 . . 3 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → ((𝐷𝐾)‘𝑡) = (𝑋 ∖ (𝐾‘(𝑋𝑡))))
3831, 37eqtr4d 2808 . 2 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → (𝐼𝑡) = ((𝐷𝐾)‘𝑡))
3913, 24, 38eqfnfvd 6459 1 (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wral 3061  Vcvv 3351  cdif 3720  cin 3722  wss 3723  𝒫 cpw 4298   cuni 4575  cmpt 4864   Fn wfn 6025  wf 6026  1-1-ontowf1o 6029  cfv 6030  (class class class)co 6796  𝑚 cmap 8013  Topctop 20918  intcnt 21042  clsccl 21043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-1st 7319  df-2nd 7320  df-map 8015  df-top 20919  df-cld 21044  df-ntr 21045  df-cls 21046
This theorem is referenced by:  dssmapclsntr  38951
  Copyright terms: Public domain W3C validator