Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapntrcls Structured version   Visualization version   GIF version

Theorem dssmapntrcls 41627
Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 33069. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x 𝑋 = 𝐽
dssmapclsntr.k 𝐾 = (cls‘𝐽)
dssmapclsntr.i 𝐼 = (int‘𝐽)
dssmapclsntr.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapclsntr.d 𝐷 = (𝑂𝑋)
Assertion
Ref Expression
dssmapntrcls (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
Distinct variable groups:   𝐽,𝑏,𝑓,𝑠   𝑓,𝐾,𝑠   𝑋,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝐼(𝑓,𝑠,𝑏)   𝐾(𝑏)   𝑂(𝑓,𝑠,𝑏)

Proof of Theorem dssmapntrcls
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 vpwex 5295 . . . . . . 7 𝒫 𝑡 ∈ V
21inex2 5237 . . . . . 6 (𝐽 ∩ 𝒫 𝑡) ∈ V
32uniex 7572 . . . . 5 (𝐽 ∩ 𝒫 𝑡) ∈ V
43rgenw 3075 . . . 4 𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡) ∈ V
5 nfcv 2906 . . . . 5 𝑡𝒫 𝑋
65fnmptf 6553 . . . 4 (∀𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡) ∈ V → (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋)
74, 6mp1i 13 . . 3 (𝐽 ∈ Top → (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋)
8 dssmapclsntr.i . . . . 5 𝐼 = (int‘𝐽)
9 dssmapclsntr.x . . . . . 6 𝑋 = 𝐽
109ntrfval 22083 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)))
118, 10syl5eq 2791 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)))
1211fneq1d 6510 . . 3 (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋))
137, 12mpbird 256 . 2 (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋)
14 dssmapclsntr.o . . . . . 6 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
15 dssmapclsntr.d . . . . . 6 𝐷 = (𝑂𝑋)
169topopn 21963 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
1714, 15, 16dssmapf1od 41518 . . . . 5 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋))
18 f1of 6700 . . . . 5 (𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋) → 𝐷:(𝒫 𝑋m 𝒫 𝑋)⟶(𝒫 𝑋m 𝒫 𝑋))
1917, 18syl 17 . . . 4 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋m 𝒫 𝑋)⟶(𝒫 𝑋m 𝒫 𝑋))
20 dssmapclsntr.k . . . . 5 𝐾 = (cls‘𝐽)
219, 20clselmap 41626 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
2219, 21ffvelrnd 6944 . . 3 (𝐽 ∈ Top → (𝐷𝐾) ∈ (𝒫 𝑋m 𝒫 𝑋))
23 elmapfn 8611 . . 3 ((𝐷𝐾) ∈ (𝒫 𝑋m 𝒫 𝑋) → (𝐷𝐾) Fn 𝒫 𝑋)
2422, 23syl 17 . 2 (𝐽 ∈ Top → (𝐷𝐾) Fn 𝒫 𝑋)
25 elpwi 4539 . . . . 5 (𝑡 ∈ 𝒫 𝑋𝑡𝑋)
269ntrval2 22110 . . . . 5 ((𝐽 ∈ Top ∧ 𝑡𝑋) → ((int‘𝐽)‘𝑡) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡))))
2725, 26sylan2 592 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → ((int‘𝐽)‘𝑡) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡))))
288fveq1i 6757 . . . 4 (𝐼𝑡) = ((int‘𝐽)‘𝑡)
2920fveq1i 6757 . . . . 5 (𝐾‘(𝑋𝑡)) = ((cls‘𝐽)‘(𝑋𝑡))
3029difeq2i 4050 . . . 4 (𝑋 ∖ (𝐾‘(𝑋𝑡))) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡)))
3127, 28, 303eqtr4g 2804 . . 3 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → (𝐼𝑡) = (𝑋 ∖ (𝐾‘(𝑋𝑡))))
3216adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝑋𝐽)
3321adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
34 eqid 2738 . . . 4 (𝐷𝐾) = (𝐷𝐾)
35 simpr 484 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝑡 ∈ 𝒫 𝑋)
36 eqid 2738 . . . 4 ((𝐷𝐾)‘𝑡) = ((𝐷𝐾)‘𝑡)
3714, 15, 32, 33, 34, 35, 36dssmapfv3d 41516 . . 3 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → ((𝐷𝐾)‘𝑡) = (𝑋 ∖ (𝐾‘(𝑋𝑡))))
3831, 37eqtr4d 2781 . 2 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → (𝐼𝑡) = ((𝐷𝐾)‘𝑡))
3913, 24, 38eqfnfvd 6894 1 (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  cin 3882  wss 3883  𝒫 cpw 4530   cuni 4836  cmpt 5153   Fn wfn 6413  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  m cmap 8573  Topctop 21950  intcnt 22076  clsccl 22077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-top 21951  df-cld 22078  df-ntr 22079  df-cls 22080
This theorem is referenced by:  dssmapclsntr  41628
  Copyright terms: Public domain W3C validator