Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapntrcls Structured version   Visualization version   GIF version

Theorem dssmapntrcls 43181
Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 34496. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x 𝑋 = βˆͺ 𝐽
dssmapclsntr.k 𝐾 = (clsβ€˜π½)
dssmapclsntr.i 𝐼 = (intβ€˜π½)
dssmapclsntr.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– (π‘“β€˜(𝑏 βˆ– 𝑠))))))
dssmapclsntr.d 𝐷 = (π‘‚β€˜π‘‹)
Assertion
Ref Expression
dssmapntrcls (𝐽 ∈ Top β†’ 𝐼 = (π·β€˜πΎ))
Distinct variable groups:   𝐽,𝑏,𝑓,𝑠   𝑓,𝐾,𝑠   𝑋,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝐼(𝑓,𝑠,𝑏)   𝐾(𝑏)   𝑂(𝑓,𝑠,𝑏)

Proof of Theorem dssmapntrcls
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 vpwex 5374 . . . . . . 7 𝒫 𝑑 ∈ V
21inex2 5317 . . . . . 6 (𝐽 ∩ 𝒫 𝑑) ∈ V
32uniex 7733 . . . . 5 βˆͺ (𝐽 ∩ 𝒫 𝑑) ∈ V
43rgenw 3063 . . . 4 βˆ€π‘‘ ∈ 𝒫 𝑋βˆͺ (𝐽 ∩ 𝒫 𝑑) ∈ V
5 nfcv 2901 . . . . 5 Ⅎ𝑑𝒫 𝑋
65fnmptf 6685 . . . 4 (βˆ€π‘‘ ∈ 𝒫 𝑋βˆͺ (𝐽 ∩ 𝒫 𝑑) ∈ V β†’ (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)) Fn 𝒫 𝑋)
74, 6mp1i 13 . . 3 (𝐽 ∈ Top β†’ (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)) Fn 𝒫 𝑋)
8 dssmapclsntr.i . . . . 5 𝐼 = (intβ€˜π½)
9 dssmapclsntr.x . . . . . 6 𝑋 = βˆͺ 𝐽
109ntrfval 22748 . . . . 5 (𝐽 ∈ Top β†’ (intβ€˜π½) = (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)))
118, 10eqtrid 2782 . . . 4 (𝐽 ∈ Top β†’ 𝐼 = (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)))
1211fneq1d 6641 . . 3 (𝐽 ∈ Top β†’ (𝐼 Fn 𝒫 𝑋 ↔ (𝑑 ∈ 𝒫 𝑋 ↦ βˆͺ (𝐽 ∩ 𝒫 𝑑)) Fn 𝒫 𝑋))
137, 12mpbird 256 . 2 (𝐽 ∈ Top β†’ 𝐼 Fn 𝒫 𝑋)
14 dssmapclsntr.o . . . . . 6 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 βˆ– (π‘“β€˜(𝑏 βˆ– 𝑠))))))
15 dssmapclsntr.d . . . . . 6 𝐷 = (π‘‚β€˜π‘‹)
169topopn 22628 . . . . . 6 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
1714, 15, 16dssmapf1od 43074 . . . . 5 (𝐽 ∈ Top β†’ 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-ontoβ†’(𝒫 𝑋 ↑m 𝒫 𝑋))
18 f1of 6832 . . . . 5 (𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)–1-1-ontoβ†’(𝒫 𝑋 ↑m 𝒫 𝑋) β†’ 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)⟢(𝒫 𝑋 ↑m 𝒫 𝑋))
1917, 18syl 17 . . . 4 (𝐽 ∈ Top β†’ 𝐷:(𝒫 𝑋 ↑m 𝒫 𝑋)⟢(𝒫 𝑋 ↑m 𝒫 𝑋))
20 dssmapclsntr.k . . . . 5 𝐾 = (clsβ€˜π½)
219, 20clselmap 43180 . . . 4 (𝐽 ∈ Top β†’ 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋))
2219, 21ffvelcdmd 7086 . . 3 (𝐽 ∈ Top β†’ (π·β€˜πΎ) ∈ (𝒫 𝑋 ↑m 𝒫 𝑋))
23 elmapfn 8861 . . 3 ((π·β€˜πΎ) ∈ (𝒫 𝑋 ↑m 𝒫 𝑋) β†’ (π·β€˜πΎ) Fn 𝒫 𝑋)
2422, 23syl 17 . 2 (𝐽 ∈ Top β†’ (π·β€˜πΎ) Fn 𝒫 𝑋)
25 elpwi 4608 . . . . 5 (𝑑 ∈ 𝒫 𝑋 β†’ 𝑑 βŠ† 𝑋)
269ntrval2 22775 . . . . 5 ((𝐽 ∈ Top ∧ 𝑑 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘‘) = (𝑋 βˆ– ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝑑))))
2725, 26sylan2 591 . . . 4 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ ((intβ€˜π½)β€˜π‘‘) = (𝑋 βˆ– ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝑑))))
288fveq1i 6891 . . . 4 (πΌβ€˜π‘‘) = ((intβ€˜π½)β€˜π‘‘)
2920fveq1i 6891 . . . . 5 (πΎβ€˜(𝑋 βˆ– 𝑑)) = ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝑑))
3029difeq2i 4118 . . . 4 (𝑋 βˆ– (πΎβ€˜(𝑋 βˆ– 𝑑))) = (𝑋 βˆ– ((clsβ€˜π½)β€˜(𝑋 βˆ– 𝑑)))
3127, 28, 303eqtr4g 2795 . . 3 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ (πΌβ€˜π‘‘) = (𝑋 βˆ– (πΎβ€˜(𝑋 βˆ– 𝑑))))
3216adantr 479 . . . 4 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ 𝑋 ∈ 𝐽)
3321adantr 479 . . . 4 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ 𝐾 ∈ (𝒫 𝑋 ↑m 𝒫 𝑋))
34 eqid 2730 . . . 4 (π·β€˜πΎ) = (π·β€˜πΎ)
35 simpr 483 . . . 4 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ 𝑑 ∈ 𝒫 𝑋)
36 eqid 2730 . . . 4 ((π·β€˜πΎ)β€˜π‘‘) = ((π·β€˜πΎ)β€˜π‘‘)
3714, 15, 32, 33, 34, 35, 36dssmapfv3d 43072 . . 3 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ ((π·β€˜πΎ)β€˜π‘‘) = (𝑋 βˆ– (πΎβ€˜(𝑋 βˆ– 𝑑))))
3831, 37eqtr4d 2773 . 2 ((𝐽 ∈ Top ∧ 𝑑 ∈ 𝒫 𝑋) β†’ (πΌβ€˜π‘‘) = ((π·β€˜πΎ)β€˜π‘‘))
3913, 24, 38eqfnfvd 7034 1 (𝐽 ∈ Top β†’ 𝐼 = (π·β€˜πΎ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  Vcvv 3472   βˆ– cdif 3944   ∩ cin 3946   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907   ↦ cmpt 5230   Fn wfn 6537  βŸΆwf 6538  β€“1-1-ontoβ†’wf1o 6541  β€˜cfv 6542  (class class class)co 7411   ↑m cmap 8822  Topctop 22615  intcnt 22741  clsccl 22742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-map 8824  df-top 22616  df-cld 22743  df-ntr 22744  df-cls 22745
This theorem is referenced by:  dssmapclsntr  43182
  Copyright terms: Public domain W3C validator