Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapntrcls Structured version   Visualization version   GIF version

Theorem dssmapntrcls 44235
Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 35262. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x 𝑋 = 𝐽
dssmapclsntr.k 𝐾 = (cls‘𝐽)
dssmapclsntr.i 𝐼 = (int‘𝐽)
dssmapclsntr.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapclsntr.d 𝐷 = (𝑂𝑋)
Assertion
Ref Expression
dssmapntrcls (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
Distinct variable groups:   𝐽,𝑏,𝑓,𝑠   𝑓,𝐾,𝑠   𝑋,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝐼(𝑓,𝑠,𝑏)   𝐾(𝑏)   𝑂(𝑓,𝑠,𝑏)

Proof of Theorem dssmapntrcls
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 vpwex 5319 . . . . . . 7 𝒫 𝑡 ∈ V
21inex2 5260 . . . . . 6 (𝐽 ∩ 𝒫 𝑡) ∈ V
32uniex 7683 . . . . 5 (𝐽 ∩ 𝒫 𝑡) ∈ V
43rgenw 3053 . . . 4 𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡) ∈ V
5 nfcv 2896 . . . . 5 𝑡𝒫 𝑋
65fnmptf 6625 . . . 4 (∀𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡) ∈ V → (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋)
74, 6mp1i 13 . . 3 (𝐽 ∈ Top → (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋)
8 dssmapclsntr.i . . . . 5 𝐼 = (int‘𝐽)
9 dssmapclsntr.x . . . . . 6 𝑋 = 𝐽
109ntrfval 22949 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)))
118, 10eqtrid 2780 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)))
1211fneq1d 6582 . . 3 (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋))
137, 12mpbird 257 . 2 (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋)
14 dssmapclsntr.o . . . . . 6 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
15 dssmapclsntr.d . . . . . 6 𝐷 = (𝑂𝑋)
169topopn 22831 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
1714, 15, 16dssmapf1od 44128 . . . . 5 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋))
18 f1of 6771 . . . . 5 (𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋) → 𝐷:(𝒫 𝑋m 𝒫 𝑋)⟶(𝒫 𝑋m 𝒫 𝑋))
1917, 18syl 17 . . . 4 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋m 𝒫 𝑋)⟶(𝒫 𝑋m 𝒫 𝑋))
20 dssmapclsntr.k . . . . 5 𝐾 = (cls‘𝐽)
219, 20clselmap 44234 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
2219, 21ffvelcdmd 7027 . . 3 (𝐽 ∈ Top → (𝐷𝐾) ∈ (𝒫 𝑋m 𝒫 𝑋))
23 elmapfn 8798 . . 3 ((𝐷𝐾) ∈ (𝒫 𝑋m 𝒫 𝑋) → (𝐷𝐾) Fn 𝒫 𝑋)
2422, 23syl 17 . 2 (𝐽 ∈ Top → (𝐷𝐾) Fn 𝒫 𝑋)
25 elpwi 4558 . . . . 5 (𝑡 ∈ 𝒫 𝑋𝑡𝑋)
269ntrval2 22976 . . . . 5 ((𝐽 ∈ Top ∧ 𝑡𝑋) → ((int‘𝐽)‘𝑡) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡))))
2725, 26sylan2 593 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → ((int‘𝐽)‘𝑡) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡))))
288fveq1i 6832 . . . 4 (𝐼𝑡) = ((int‘𝐽)‘𝑡)
2920fveq1i 6832 . . . . 5 (𝐾‘(𝑋𝑡)) = ((cls‘𝐽)‘(𝑋𝑡))
3029difeq2i 4074 . . . 4 (𝑋 ∖ (𝐾‘(𝑋𝑡))) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡)))
3127, 28, 303eqtr4g 2793 . . 3 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → (𝐼𝑡) = (𝑋 ∖ (𝐾‘(𝑋𝑡))))
3216adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝑋𝐽)
3321adantr 480 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
34 eqid 2733 . . . 4 (𝐷𝐾) = (𝐷𝐾)
35 simpr 484 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝑡 ∈ 𝒫 𝑋)
36 eqid 2733 . . . 4 ((𝐷𝐾)‘𝑡) = ((𝐷𝐾)‘𝑡)
3714, 15, 32, 33, 34, 35, 36dssmapfv3d 44126 . . 3 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → ((𝐷𝐾)‘𝑡) = (𝑋 ∖ (𝐾‘(𝑋𝑡))))
3831, 37eqtr4d 2771 . 2 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → (𝐼𝑡) = ((𝐷𝐾)‘𝑡))
3913, 24, 38eqfnfvd 6976 1 (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3049  Vcvv 3438  cdif 3896  cin 3898  wss 3899  𝒫 cpw 4551   cuni 4860  cmpt 5176   Fn wfn 6484  wf 6485  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  m cmap 8759  Topctop 22818  intcnt 22942  clsccl 22943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761  df-top 22819  df-cld 22944  df-ntr 22945  df-cls 22946
This theorem is referenced by:  dssmapclsntr  44236
  Copyright terms: Public domain W3C validator