Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dssmapntrcls Structured version   Visualization version   GIF version

Theorem dssmapntrcls 41738
Description: The interior and closure operators on a topology are duals of each other. See also kur14lem2 33169. (Contributed by RP, 21-Apr-2021.)
Hypotheses
Ref Expression
dssmapclsntr.x 𝑋 = 𝐽
dssmapclsntr.k 𝐾 = (cls‘𝐽)
dssmapclsntr.i 𝐼 = (int‘𝐽)
dssmapclsntr.o 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
dssmapclsntr.d 𝐷 = (𝑂𝑋)
Assertion
Ref Expression
dssmapntrcls (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
Distinct variable groups:   𝐽,𝑏,𝑓,𝑠   𝑓,𝐾,𝑠   𝑋,𝑏,𝑓,𝑠
Allowed substitution hints:   𝐷(𝑓,𝑠,𝑏)   𝐼(𝑓,𝑠,𝑏)   𝐾(𝑏)   𝑂(𝑓,𝑠,𝑏)

Proof of Theorem dssmapntrcls
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 vpwex 5300 . . . . . . 7 𝒫 𝑡 ∈ V
21inex2 5242 . . . . . 6 (𝐽 ∩ 𝒫 𝑡) ∈ V
32uniex 7594 . . . . 5 (𝐽 ∩ 𝒫 𝑡) ∈ V
43rgenw 3076 . . . 4 𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡) ∈ V
5 nfcv 2907 . . . . 5 𝑡𝒫 𝑋
65fnmptf 6569 . . . 4 (∀𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡) ∈ V → (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋)
74, 6mp1i 13 . . 3 (𝐽 ∈ Top → (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋)
8 dssmapclsntr.i . . . . 5 𝐼 = (int‘𝐽)
9 dssmapclsntr.x . . . . . 6 𝑋 = 𝐽
109ntrfval 22175 . . . . 5 (𝐽 ∈ Top → (int‘𝐽) = (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)))
118, 10eqtrid 2790 . . . 4 (𝐽 ∈ Top → 𝐼 = (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)))
1211fneq1d 6526 . . 3 (𝐽 ∈ Top → (𝐼 Fn 𝒫 𝑋 ↔ (𝑡 ∈ 𝒫 𝑋 (𝐽 ∩ 𝒫 𝑡)) Fn 𝒫 𝑋))
137, 12mpbird 256 . 2 (𝐽 ∈ Top → 𝐼 Fn 𝒫 𝑋)
14 dssmapclsntr.o . . . . . 6 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏𝑠))))))
15 dssmapclsntr.d . . . . . 6 𝐷 = (𝑂𝑋)
169topopn 22055 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
1714, 15, 16dssmapf1od 41629 . . . . 5 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋))
18 f1of 6716 . . . . 5 (𝐷:(𝒫 𝑋m 𝒫 𝑋)–1-1-onto→(𝒫 𝑋m 𝒫 𝑋) → 𝐷:(𝒫 𝑋m 𝒫 𝑋)⟶(𝒫 𝑋m 𝒫 𝑋))
1917, 18syl 17 . . . 4 (𝐽 ∈ Top → 𝐷:(𝒫 𝑋m 𝒫 𝑋)⟶(𝒫 𝑋m 𝒫 𝑋))
20 dssmapclsntr.k . . . . 5 𝐾 = (cls‘𝐽)
219, 20clselmap 41737 . . . 4 (𝐽 ∈ Top → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
2219, 21ffvelrnd 6962 . . 3 (𝐽 ∈ Top → (𝐷𝐾) ∈ (𝒫 𝑋m 𝒫 𝑋))
23 elmapfn 8653 . . 3 ((𝐷𝐾) ∈ (𝒫 𝑋m 𝒫 𝑋) → (𝐷𝐾) Fn 𝒫 𝑋)
2422, 23syl 17 . 2 (𝐽 ∈ Top → (𝐷𝐾) Fn 𝒫 𝑋)
25 elpwi 4542 . . . . 5 (𝑡 ∈ 𝒫 𝑋𝑡𝑋)
269ntrval2 22202 . . . . 5 ((𝐽 ∈ Top ∧ 𝑡𝑋) → ((int‘𝐽)‘𝑡) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡))))
2725, 26sylan2 593 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → ((int‘𝐽)‘𝑡) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡))))
288fveq1i 6775 . . . 4 (𝐼𝑡) = ((int‘𝐽)‘𝑡)
2920fveq1i 6775 . . . . 5 (𝐾‘(𝑋𝑡)) = ((cls‘𝐽)‘(𝑋𝑡))
3029difeq2i 4054 . . . 4 (𝑋 ∖ (𝐾‘(𝑋𝑡))) = (𝑋 ∖ ((cls‘𝐽)‘(𝑋𝑡)))
3127, 28, 303eqtr4g 2803 . . 3 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → (𝐼𝑡) = (𝑋 ∖ (𝐾‘(𝑋𝑡))))
3216adantr 481 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝑋𝐽)
3321adantr 481 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝐾 ∈ (𝒫 𝑋m 𝒫 𝑋))
34 eqid 2738 . . . 4 (𝐷𝐾) = (𝐷𝐾)
35 simpr 485 . . . 4 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → 𝑡 ∈ 𝒫 𝑋)
36 eqid 2738 . . . 4 ((𝐷𝐾)‘𝑡) = ((𝐷𝐾)‘𝑡)
3714, 15, 32, 33, 34, 35, 36dssmapfv3d 41627 . . 3 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → ((𝐷𝐾)‘𝑡) = (𝑋 ∖ (𝐾‘(𝑋𝑡))))
3831, 37eqtr4d 2781 . 2 ((𝐽 ∈ Top ∧ 𝑡 ∈ 𝒫 𝑋) → (𝐼𝑡) = ((𝐷𝐾)‘𝑡))
3913, 24, 38eqfnfvd 6912 1 (𝐽 ∈ Top → 𝐼 = (𝐷𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  cin 3886  wss 3887  𝒫 cpw 4533   cuni 4839  cmpt 5157   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  m cmap 8615  Topctop 22042  intcnt 22168  clsccl 22169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-top 22043  df-cld 22170  df-ntr 22171  df-cls 22172
This theorem is referenced by:  dssmapclsntr  41739
  Copyright terms: Public domain W3C validator