![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumgsum | Structured version Visualization version GIF version |
Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020.) |
Ref | Expression |
---|---|
esumgsum.1 | ⊢ Ⅎ𝑘𝜑 |
esumgsum.2 | ⊢ Ⅎ𝑘𝐴 |
esumgsum.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
esumgsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumgsum | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumgsum.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumgsum.2 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | esumgsum.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
4 | esumgsum.4 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | xrge0base 32164 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
6 | xrge00 32165 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | xrge0cmn 20972 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
9 | xrge0tps 32860 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
11 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
12 | eqid 2733 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
13 | 1, 2, 11, 4, 12 | fmptdF 31859 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
14 | 4 | ex 414 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
15 | 1, 14 | ralrimi 3255 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
16 | 2 | fnmptf 6683 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞) → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
18 | 0xr 11257 | . . . . 5 ⊢ 0 ∈ ℝ* | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
20 | 17, 3, 19 | fndmfifsupp 9372 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
21 | 5, 6, 8, 10, 3, 13, 20 | tsmsid 23626 | . 2 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
22 | 1, 2, 3, 4, 21 | esumid 32980 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ∀wral 3062 ↦ cmpt 5230 Fn wfn 6535 (class class class)co 7404 Fincfn 8935 0cc0 11106 +∞cpnf 11241 ℝ*cxr 11243 [,]cicc 13323 ↾s cress 17169 Σg cgsu 17382 ℝ*𝑠cxrs 17442 CMndccmn 19641 TopSpctps 22416 Σ*cesum 32963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-fi 9402 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-xadd 13089 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-tset 17212 df-ple 17213 df-ds 17215 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-ordt 17443 df-xrs 17444 df-mre 17526 df-mrc 17527 df-acs 17529 df-ps 18515 df-tsr 18516 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-submnd 18668 df-cntz 19175 df-cmn 19643 df-fbas 20926 df-fg 20927 df-top 22378 df-topon 22395 df-topsp 22417 df-bases 22431 df-cld 22505 df-ntr 22506 df-cls 22507 df-nei 22584 df-cn 22713 df-haus 22801 df-fil 23332 df-fm 23424 df-flim 23425 df-flf 23426 df-tsms 23613 df-esum 32964 |
This theorem is referenced by: esum2d 33029 |
Copyright terms: Public domain | W3C validator |