![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumgsum | Structured version Visualization version GIF version |
Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020.) |
Ref | Expression |
---|---|
esumgsum.1 | ⊢ Ⅎ𝑘𝜑 |
esumgsum.2 | ⊢ Ⅎ𝑘𝐴 |
esumgsum.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
esumgsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumgsum | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumgsum.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumgsum.2 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | esumgsum.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
4 | esumgsum.4 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | xrge0base 32758 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
6 | xrge00 32759 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | xrge0cmn 21343 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
9 | xrge0tps 33572 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
11 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
12 | eqid 2725 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
13 | 1, 2, 11, 4, 12 | fmptdF 32459 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
14 | 4 | ex 411 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
15 | 1, 14 | ralrimi 3245 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
16 | 2 | fnmptf 6684 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞) → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
18 | 0xr 11289 | . . . . 5 ⊢ 0 ∈ ℝ* | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
20 | 17, 3, 19 | fndmfifsupp 9399 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
21 | 5, 6, 8, 10, 3, 13, 20 | tsmsid 24060 | . 2 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
22 | 1, 2, 3, 4, 21 | esumid 33692 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2875 ∀wral 3051 ↦ cmpt 5224 Fn wfn 6536 (class class class)co 7414 Fincfn 8960 0cc0 11136 +∞cpnf 11273 ℝ*cxr 11275 [,]cicc 13357 ↾s cress 17206 Σg cgsu 17419 ℝ*𝑠cxrs 17479 CMndccmn 19737 TopSpctps 22850 Σ*cesum 33675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-iin 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-fi 9432 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-q 12961 df-xadd 13123 df-ioo 13358 df-ioc 13359 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13658 df-seq 13997 df-hash 14320 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-tset 17249 df-ple 17250 df-ds 17252 df-rest 17401 df-topn 17402 df-0g 17420 df-gsum 17421 df-topgen 17422 df-ordt 17480 df-xrs 17481 df-mre 17563 df-mrc 17564 df-acs 17566 df-ps 18555 df-tsr 18556 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-submnd 18738 df-cntz 19270 df-cmn 19739 df-fbas 21278 df-fg 21279 df-top 22812 df-topon 22829 df-topsp 22851 df-bases 22865 df-cld 22939 df-ntr 22940 df-cls 22941 df-nei 23018 df-cn 23147 df-haus 23235 df-fil 23766 df-fm 23858 df-flim 23859 df-flf 23860 df-tsms 24047 df-esum 33676 |
This theorem is referenced by: esum2d 33741 |
Copyright terms: Public domain | W3C validator |