Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumgsum Structured version   Visualization version   GIF version

Theorem esumgsum 34028
Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020.)
Hypotheses
Ref Expression
esumgsum.1 𝑘𝜑
esumgsum.2 𝑘𝐴
esumgsum.3 (𝜑𝐴 ∈ Fin)
esumgsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumgsum (𝜑 → Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))

Proof of Theorem esumgsum
StepHypRef Expression
1 esumgsum.1 . 2 𝑘𝜑
2 esumgsum.2 . 2 𝑘𝐴
3 esumgsum.3 . 2 (𝜑𝐴 ∈ Fin)
4 esumgsum.4 . 2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
5 xrge0base 17546 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
6 xrge00 32998 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
7 xrge0cmn 21386 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
87a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
9 xrge0tps 33925 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
109a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
11 nfcv 2891 . . . 4 𝑘(0[,]+∞)
12 eqid 2729 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
131, 2, 11, 4, 12fmptdF 32630 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
144ex 412 . . . . . 6 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
151, 14ralrimi 3233 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
162fnmptf 6636 . . . . 5 (∀𝑘𝐴 𝐵 ∈ (0[,]+∞) → (𝑘𝐴𝐵) Fn 𝐴)
1715, 16syl 17 . . . 4 (𝜑 → (𝑘𝐴𝐵) Fn 𝐴)
18 0xr 11197 . . . . 5 0 ∈ ℝ*
1918a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ*)
2017, 3, 19fndmfifsupp 9305 . . 3 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
215, 6, 8, 10, 3, 13, 20tsmsid 24060 . 2 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
221, 2, 3, 4, 21esumid 34027 1 (𝜑 → Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044  cmpt 5183   Fn wfn 6494  (class class class)co 7369  Fincfn 8895  0cc0 11044  +∞cpnf 11181  *cxr 11183  [,]cicc 13285  s cress 17176   Σg cgsu 17379  *𝑠cxrs 17439  CMndccmn 19694  TopSpctps 22852  Σ*cesum 34010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-xadd 13049  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-tset 17215  df-ple 17216  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-ordt 17440  df-xrs 17441  df-mre 17523  df-mrc 17524  df-acs 17526  df-ps 18507  df-tsr 18508  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-cntz 19231  df-cmn 19696  df-fbas 21293  df-fg 21294  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-cn 23147  df-haus 23235  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-tsms 24047  df-esum 34011
This theorem is referenced by:  esum2d  34076
  Copyright terms: Public domain W3C validator