![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > esumgsum | Structured version Visualization version GIF version |
Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020.) |
Ref | Expression |
---|---|
esumgsum.1 | ⊢ Ⅎ𝑘𝜑 |
esumgsum.2 | ⊢ Ⅎ𝑘𝐴 |
esumgsum.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
esumgsum.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
esumgsum | ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumgsum.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | esumgsum.2 | . 2 ⊢ Ⅎ𝑘𝐴 | |
3 | esumgsum.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
4 | esumgsum.4 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) | |
5 | xrge0base 30025 | . . 3 ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
6 | xrge00 30026 | . . 3 ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | |
7 | xrge0cmn 20003 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd | |
8 | 7 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ CMnd) |
9 | xrge0tps 30328 | . . . 4 ⊢ (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp | |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → (ℝ*𝑠 ↾s (0[,]+∞)) ∈ TopSp) |
11 | nfcv 2913 | . . . 4 ⊢ Ⅎ𝑘(0[,]+∞) | |
12 | eqid 2771 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) | |
13 | 1, 2, 11, 4, 12 | fmptdF 29796 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
14 | 4 | ex 397 | . . . . . 6 ⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
15 | 1, 14 | ralrimi 3106 | . . . . 5 ⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
16 | 2 | fnmptf 6155 | . . . . 5 ⊢ (∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞) → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
17 | 15, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
18 | 0xr 10292 | . . . . 5 ⊢ 0 ∈ ℝ* | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℝ*) |
20 | 17, 3, 19 | fndmfifsupp 8448 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
21 | 5, 6, 8, 10, 3, 13, 20 | tsmsid 22163 | . 2 ⊢ (𝜑 → ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ((ℝ*𝑠 ↾s (0[,]+∞)) tsums (𝑘 ∈ 𝐴 ↦ 𝐵))) |
22 | 1, 2, 3, 4, 21 | esumid 30446 | 1 ⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = ((ℝ*𝑠 ↾s (0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 Ⅎwnf 1856 ∈ wcel 2145 Ⅎwnfc 2900 ∀wral 3061 ↦ cmpt 4864 Fn wfn 6025 (class class class)co 6796 Fincfn 8113 0cc0 10142 +∞cpnf 10277 ℝ*cxr 10279 [,]cicc 12383 ↾s cress 16065 Σg cgsu 16309 ℝ*𝑠cxrs 16368 CMndccmn 18400 TopSpctps 20957 Σ*cesum 30429 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-fi 8477 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-dec 11701 df-uz 11894 df-q 11997 df-xadd 12152 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-tset 16168 df-ple 16169 df-ds 16172 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-ordt 16369 df-xrs 16370 df-mre 16454 df-mrc 16455 df-acs 16457 df-ps 17408 df-tsr 17409 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-cntz 17957 df-cmn 18402 df-fbas 19958 df-fg 19959 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-cn 21252 df-haus 21340 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-tsms 22150 df-esum 30430 |
This theorem is referenced by: esum2d 30495 |
Copyright terms: Public domain | W3C validator |