Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  esumgsum Structured version   Visualization version   GIF version

Theorem esumgsum 33693
Description: A finite extended sum is the group sum over the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 24-Apr-2020.)
Hypotheses
Ref Expression
esumgsum.1 𝑘𝜑
esumgsum.2 𝑘𝐴
esumgsum.3 (𝜑𝐴 ∈ Fin)
esumgsum.4 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
esumgsum (𝜑 → Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))

Proof of Theorem esumgsum
StepHypRef Expression
1 esumgsum.1 . 2 𝑘𝜑
2 esumgsum.2 . 2 𝑘𝐴
3 esumgsum.3 . 2 (𝜑𝐴 ∈ Fin)
4 esumgsum.4 . 2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
5 xrge0base 32758 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
6 xrge00 32759 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
7 xrge0cmn 21343 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
87a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
9 xrge0tps 33572 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
109a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
11 nfcv 2892 . . . 4 𝑘(0[,]+∞)
12 eqid 2725 . . . 4 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
131, 2, 11, 4, 12fmptdF 32459 . . 3 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
144ex 411 . . . . . 6 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
151, 14ralrimi 3245 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
162fnmptf 6684 . . . . 5 (∀𝑘𝐴 𝐵 ∈ (0[,]+∞) → (𝑘𝐴𝐵) Fn 𝐴)
1715, 16syl 17 . . . 4 (𝜑 → (𝑘𝐴𝐵) Fn 𝐴)
18 0xr 11289 . . . . 5 0 ∈ ℝ*
1918a1i 11 . . . 4 (𝜑 → 0 ∈ ℝ*)
2017, 3, 19fndmfifsupp 9399 . . 3 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
215, 6, 8, 10, 3, 13, 20tsmsid 24060 . 2 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵)))
221, 2, 3, 4, 21esumid 33692 1 (𝜑 → Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wnf 1777  wcel 2098  wnfc 2875  wral 3051  cmpt 5224   Fn wfn 6536  (class class class)co 7414  Fincfn 8960  0cc0 11136  +∞cpnf 11273  *cxr 11275  [,]cicc 13357  s cress 17206   Σg cgsu 17419  *𝑠cxrs 17479  CMndccmn 19737  TopSpctps 22850  Σ*cesum 33675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4943  df-iun 4991  df-iin 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7867  df-1st 7989  df-2nd 7990  df-supp 8162  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-1o 8483  df-er 8721  df-map 8843  df-en 8961  df-dom 8962  df-sdom 8963  df-fin 8964  df-fsupp 9384  df-fi 9432  df-sup 9463  df-inf 9464  df-oi 9531  df-card 9960  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-uz 12851  df-q 12961  df-xadd 13123  df-ioo 13358  df-ioc 13359  df-ico 13360  df-icc 13361  df-fz 13515  df-fzo 13658  df-seq 13997  df-hash 14320  df-struct 17113  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-ress 17207  df-plusg 17243  df-mulr 17244  df-tset 17249  df-ple 17250  df-ds 17252  df-rest 17401  df-topn 17402  df-0g 17420  df-gsum 17421  df-topgen 17422  df-ordt 17480  df-xrs 17481  df-mre 17563  df-mrc 17564  df-acs 17566  df-ps 18555  df-tsr 18556  df-mgm 18597  df-sgrp 18676  df-mnd 18692  df-submnd 18738  df-cntz 19270  df-cmn 19739  df-fbas 21278  df-fg 21279  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22865  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-cn 23147  df-haus 23235  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-tsms 24047  df-esum 33676
This theorem is referenced by:  esum2d  33741
  Copyright terms: Public domain W3C validator