![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem4 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 34909. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem.q | ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) |
Ref | Expression |
---|---|
cvmliftlem4 | ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem.q | . . . . 5 ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) | |
2 | 1 | fveq1i 6898 | . . . 4 ⊢ (𝑄‘0) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) |
3 | 0z 12599 | . . . . 5 ⊢ 0 ∈ ℤ | |
4 | seq1 14011 | . . . . 5 ⊢ (0 ∈ ℤ → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
6 | 2, 5 | eqtri 2756 | . . 3 ⊢ (𝑄‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
7 | fnresi 6684 | . . . 4 ⊢ ( I ↾ ℕ) Fn ℕ | |
8 | c0ex 11238 | . . . . 5 ⊢ 0 ∈ V | |
9 | snex 5433 | . . . . 5 ⊢ {〈0, 𝑃〉} ∈ V | |
10 | 8, 9 | fnsn 6611 | . . . 4 ⊢ {〈0, {〈0, 𝑃〉}〉} Fn {0} |
11 | 0nnn 12278 | . . . . . 6 ⊢ ¬ 0 ∈ ℕ | |
12 | disjsn 4716 | . . . . . 6 ⊢ ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ) | |
13 | 11, 12 | mpbir 230 | . . . . 5 ⊢ (ℕ ∩ {0}) = ∅ |
14 | 8 | snid 4665 | . . . . 5 ⊢ 0 ∈ {0} |
15 | 13, 14 | pm3.2i 470 | . . . 4 ⊢ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0}) |
16 | fvun2 6990 | . . . 4 ⊢ ((( I ↾ ℕ) Fn ℕ ∧ {〈0, {〈0, 𝑃〉}〉} Fn {0} ∧ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0})) → ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0)) | |
17 | 7, 10, 15, 16 | mp3an 1458 | . . 3 ⊢ ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
18 | 6, 17 | eqtri 2756 | . 2 ⊢ (𝑄‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
19 | 8, 9 | fvsn 7190 | . 2 ⊢ ({〈0, {〈0, 𝑃〉}〉}‘0) = {〈0, 𝑃〉} |
20 | 18, 19 | eqtri 2756 | 1 ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3058 {crab 3429 Vcvv 3471 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ⊆ wss 3947 ∅c0 4323 𝒫 cpw 4603 {csn 4629 〈cop 4635 ∪ cuni 4908 ∪ ciun 4996 ↦ cmpt 5231 I cid 5575 × cxp 5676 ◡ccnv 5677 ran crn 5679 ↾ cres 5680 “ cima 5681 Fn wfn 6543 ⟶wf 6544 ‘cfv 6548 ℩crio 7375 (class class class)co 7420 ∈ cmpo 7422 1st c1st 7991 2nd c2nd 7992 0cc0 11138 1c1 11139 − cmin 11474 / cdiv 11901 ℕcn 12242 ℤcz 12588 (,)cioo 13356 [,]cicc 13359 ...cfz 13516 seqcseq 13998 ↾t crest 17401 topGenctg 17418 Cn ccn 23127 Homeochmeo 23656 IIcii 24794 CovMap ccvm 34865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-seq 13999 |
This theorem is referenced by: cvmliftlem7 34901 cvmliftlem13 34906 |
Copyright terms: Public domain | W3C validator |