Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem4 Structured version   Visualization version   GIF version

Theorem cvmliftlem4 34768
Description: Lemma for cvmlift 34779. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 βˆ’ 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (π‘˜ ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐢 βˆ– {βˆ…}) ∣ (βˆͺ 𝑠 = (◑𝐹 β€œ π‘˜) ∧ βˆ€π‘’ ∈ 𝑠 (βˆ€π‘£ ∈ (𝑠 βˆ– {𝑒})(𝑒 ∩ 𝑣) = βˆ… ∧ (𝐹 β†Ύ 𝑒) ∈ ((𝐢 β†Ύt 𝑒)Homeo(𝐽 β†Ύt π‘˜))))})
cvmliftlem.b 𝐡 = βˆͺ 𝐢
cvmliftlem.x 𝑋 = βˆͺ 𝐽
cvmliftlem.f (πœ‘ β†’ 𝐹 ∈ (𝐢 CovMap 𝐽))
cvmliftlem.g (πœ‘ β†’ 𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (πœ‘ β†’ 𝑃 ∈ 𝐡)
cvmliftlem.e (πœ‘ β†’ (πΉβ€˜π‘ƒ) = (πΊβ€˜0))
cvmliftlem.n (πœ‘ β†’ 𝑁 ∈ β„•)
cvmliftlem.t (πœ‘ β†’ 𝑇:(1...𝑁)⟢βˆͺ 𝑗 ∈ 𝐽 ({𝑗} Γ— (π‘†β€˜π‘—)))
cvmliftlem.a (πœ‘ β†’ βˆ€π‘˜ ∈ (1...𝑁)(𝐺 β€œ (((π‘˜ βˆ’ 1) / 𝑁)[,](π‘˜ / 𝑁))) βŠ† (1st β€˜(π‘‡β€˜π‘˜)))
cvmliftlem.l 𝐿 = (topGenβ€˜ran (,))
cvmliftlem.q 𝑄 = seq0((π‘₯ ∈ V, π‘š ∈ β„• ↦ (𝑧 ∈ (((π‘š βˆ’ 1) / 𝑁)[,](π‘š / 𝑁)) ↦ (β—‘(𝐹 β†Ύ (℩𝑏 ∈ (2nd β€˜(π‘‡β€˜π‘š))(π‘₯β€˜((π‘š βˆ’ 1) / 𝑁)) ∈ 𝑏))β€˜(πΊβ€˜π‘§)))), (( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩}))
Assertion
Ref Expression
cvmliftlem4 (π‘„β€˜0) = {⟨0, π‘ƒβŸ©}
Distinct variable groups:   𝑣,𝑏,𝑧,𝐡   𝑗,𝑏,π‘˜,π‘š,𝑠,𝑒,π‘₯,𝐹,𝑣,𝑧   𝑧,𝐿   𝑃,𝑏,π‘˜,π‘š,𝑒,𝑣,π‘₯,𝑧   𝐢,𝑏,𝑗,π‘˜,𝑠,𝑒,𝑣,𝑧   πœ‘,𝑗,𝑠,π‘₯,𝑧   𝑁,𝑏,π‘˜,π‘š,𝑒,𝑣,π‘₯,𝑧   𝑆,𝑏,𝑗,π‘˜,𝑠,𝑒,𝑣,π‘₯,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,π‘˜,π‘š,𝑠,𝑒,𝑣,π‘₯,𝑧   𝑇,𝑏,𝑗,π‘˜,π‘š,𝑠,𝑒,𝑣,π‘₯,𝑧   𝐽,𝑏,𝑗,π‘˜,𝑠,𝑒,𝑣,π‘₯,𝑧   𝑄,𝑏,π‘˜,π‘š,𝑒,𝑣,π‘₯,𝑧
Allowed substitution hints:   πœ‘(𝑣,𝑒,π‘˜,π‘š,𝑏)   𝐡(π‘₯,𝑒,𝑗,π‘˜,π‘š,𝑠)   𝐢(π‘₯,π‘š)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(π‘š)   𝐽(π‘š)   𝐿(π‘₯,𝑣,𝑒,𝑗,π‘˜,π‘š,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑋(π‘₯,𝑧,𝑣,𝑒,π‘˜,π‘š,𝑠,𝑏)

Proof of Theorem cvmliftlem4
StepHypRef Expression
1 cvmliftlem.q . . . . 5 𝑄 = seq0((π‘₯ ∈ V, π‘š ∈ β„• ↦ (𝑧 ∈ (((π‘š βˆ’ 1) / 𝑁)[,](π‘š / 𝑁)) ↦ (β—‘(𝐹 β†Ύ (℩𝑏 ∈ (2nd β€˜(π‘‡β€˜π‘š))(π‘₯β€˜((π‘š βˆ’ 1) / 𝑁)) ∈ 𝑏))β€˜(πΊβ€˜π‘§)))), (( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩}))
21fveq1i 6882 . . . 4 (π‘„β€˜0) = (seq0((π‘₯ ∈ V, π‘š ∈ β„• ↦ (𝑧 ∈ (((π‘š βˆ’ 1) / 𝑁)[,](π‘š / 𝑁)) ↦ (β—‘(𝐹 β†Ύ (℩𝑏 ∈ (2nd β€˜(π‘‡β€˜π‘š))(π‘₯β€˜((π‘š βˆ’ 1) / 𝑁)) ∈ 𝑏))β€˜(πΊβ€˜π‘§)))), (( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩}))β€˜0)
3 0z 12566 . . . . 5 0 ∈ β„€
4 seq1 13976 . . . . 5 (0 ∈ β„€ β†’ (seq0((π‘₯ ∈ V, π‘š ∈ β„• ↦ (𝑧 ∈ (((π‘š βˆ’ 1) / 𝑁)[,](π‘š / 𝑁)) ↦ (β—‘(𝐹 β†Ύ (℩𝑏 ∈ (2nd β€˜(π‘‡β€˜π‘š))(π‘₯β€˜((π‘š βˆ’ 1) / 𝑁)) ∈ 𝑏))β€˜(πΊβ€˜π‘§)))), (( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩}))β€˜0) = ((( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩})β€˜0))
53, 4ax-mp 5 . . . 4 (seq0((π‘₯ ∈ V, π‘š ∈ β„• ↦ (𝑧 ∈ (((π‘š βˆ’ 1) / 𝑁)[,](π‘š / 𝑁)) ↦ (β—‘(𝐹 β†Ύ (℩𝑏 ∈ (2nd β€˜(π‘‡β€˜π‘š))(π‘₯β€˜((π‘š βˆ’ 1) / 𝑁)) ∈ 𝑏))β€˜(πΊβ€˜π‘§)))), (( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩}))β€˜0) = ((( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩})β€˜0)
62, 5eqtri 2752 . . 3 (π‘„β€˜0) = ((( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩})β€˜0)
7 fnresi 6669 . . . 4 ( I β†Ύ β„•) Fn β„•
8 c0ex 11205 . . . . 5 0 ∈ V
9 snex 5421 . . . . 5 {⟨0, π‘ƒβŸ©} ∈ V
108, 9fnsn 6596 . . . 4 {⟨0, {⟨0, π‘ƒβŸ©}⟩} Fn {0}
11 0nnn 12245 . . . . . 6 Β¬ 0 ∈ β„•
12 disjsn 4707 . . . . . 6 ((β„• ∩ {0}) = βˆ… ↔ Β¬ 0 ∈ β„•)
1311, 12mpbir 230 . . . . 5 (β„• ∩ {0}) = βˆ…
148snid 4656 . . . . 5 0 ∈ {0}
1513, 14pm3.2i 470 . . . 4 ((β„• ∩ {0}) = βˆ… ∧ 0 ∈ {0})
16 fvun2 6973 . . . 4 ((( I β†Ύ β„•) Fn β„• ∧ {⟨0, {⟨0, π‘ƒβŸ©}⟩} Fn {0} ∧ ((β„• ∩ {0}) = βˆ… ∧ 0 ∈ {0})) β†’ ((( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩})β€˜0) = ({⟨0, {⟨0, π‘ƒβŸ©}⟩}β€˜0))
177, 10, 15, 16mp3an 1457 . . 3 ((( I β†Ύ β„•) βˆͺ {⟨0, {⟨0, π‘ƒβŸ©}⟩})β€˜0) = ({⟨0, {⟨0, π‘ƒβŸ©}⟩}β€˜0)
186, 17eqtri 2752 . 2 (π‘„β€˜0) = ({⟨0, {⟨0, π‘ƒβŸ©}⟩}β€˜0)
198, 9fvsn 7171 . 2 ({⟨0, {⟨0, π‘ƒβŸ©}⟩}β€˜0) = {⟨0, π‘ƒβŸ©}
2018, 19eqtri 2752 1 (π‘„β€˜0) = {⟨0, π‘ƒβŸ©}
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  {crab 3424  Vcvv 3466   βˆ– cdif 3937   βˆͺ cun 3938   ∩ cin 3939   βŠ† wss 3940  βˆ…c0 4314  π’« cpw 4594  {csn 4620  βŸ¨cop 4626  βˆͺ cuni 4899  βˆͺ ciun 4987   ↦ cmpt 5221   I cid 5563   Γ— cxp 5664  β—‘ccnv 5665  ran crn 5667   β†Ύ cres 5668   β€œ cima 5669   Fn wfn 6528  βŸΆwf 6529  β€˜cfv 6533  β„©crio 7356  (class class class)co 7401   ∈ cmpo 7403  1st c1st 7966  2nd c2nd 7967  0cc0 11106  1c1 11107   βˆ’ cmin 11441   / cdiv 11868  β„•cn 12209  β„€cz 12555  (,)cioo 13321  [,]cicc 13324  ...cfz 13481  seqcseq 13963   β†Ύt crest 17365  topGenctg 17382   Cn ccn 23050  Homeochmeo 23579  IIcii 24717   CovMap ccvm 34735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820  df-seq 13964
This theorem is referenced by:  cvmliftlem7  34771  cvmliftlem13  34776
  Copyright terms: Public domain W3C validator