Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem4 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 33161. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem.q | ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) |
Ref | Expression |
---|---|
cvmliftlem4 | ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem.q | . . . . 5 ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) | |
2 | 1 | fveq1i 6757 | . . . 4 ⊢ (𝑄‘0) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) |
3 | 0z 12260 | . . . . 5 ⊢ 0 ∈ ℤ | |
4 | seq1 13662 | . . . . 5 ⊢ (0 ∈ ℤ → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
6 | 2, 5 | eqtri 2766 | . . 3 ⊢ (𝑄‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
7 | fnresi 6545 | . . . 4 ⊢ ( I ↾ ℕ) Fn ℕ | |
8 | c0ex 10900 | . . . . 5 ⊢ 0 ∈ V | |
9 | snex 5349 | . . . . 5 ⊢ {〈0, 𝑃〉} ∈ V | |
10 | 8, 9 | fnsn 6476 | . . . 4 ⊢ {〈0, {〈0, 𝑃〉}〉} Fn {0} |
11 | 0nnn 11939 | . . . . . 6 ⊢ ¬ 0 ∈ ℕ | |
12 | disjsn 4644 | . . . . . 6 ⊢ ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ) | |
13 | 11, 12 | mpbir 230 | . . . . 5 ⊢ (ℕ ∩ {0}) = ∅ |
14 | 8 | snid 4594 | . . . . 5 ⊢ 0 ∈ {0} |
15 | 13, 14 | pm3.2i 470 | . . . 4 ⊢ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0}) |
16 | fvun2 6842 | . . . 4 ⊢ ((( I ↾ ℕ) Fn ℕ ∧ {〈0, {〈0, 𝑃〉}〉} Fn {0} ∧ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0})) → ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0)) | |
17 | 7, 10, 15, 16 | mp3an 1459 | . . 3 ⊢ ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
18 | 6, 17 | eqtri 2766 | . 2 ⊢ (𝑄‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
19 | 8, 9 | fvsn 7035 | . 2 ⊢ ({〈0, {〈0, 𝑃〉}〉}‘0) = {〈0, 𝑃〉} |
20 | 18, 19 | eqtri 2766 | 1 ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {csn 4558 〈cop 4564 ∪ cuni 4836 ∪ ciun 4921 ↦ cmpt 5153 I cid 5479 × cxp 5578 ◡ccnv 5579 ran crn 5581 ↾ cres 5582 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 ℩crio 7211 (class class class)co 7255 ∈ cmpo 7257 1st c1st 7802 2nd c2nd 7803 0cc0 10802 1c1 10803 − cmin 11135 / cdiv 11562 ℕcn 11903 ℤcz 12249 (,)cioo 13008 [,]cicc 13011 ...cfz 13168 seqcseq 13649 ↾t crest 17048 topGenctg 17065 Cn ccn 22283 Homeochmeo 22812 IIcii 23944 CovMap ccvm 33117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 |
This theorem is referenced by: cvmliftlem7 33153 cvmliftlem13 33158 |
Copyright terms: Public domain | W3C validator |