| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for cvmlift 35364. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
| cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
| cvmliftlem.q | ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) |
| Ref | Expression |
|---|---|
| cvmliftlem4 | ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmliftlem.q | . . . . 5 ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) | |
| 2 | 1 | fveq1i 6829 | . . . 4 ⊢ (𝑄‘0) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) |
| 3 | 0z 12486 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 4 | seq1 13923 | . . . . 5 ⊢ (0 ∈ ℤ → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
| 6 | 2, 5 | eqtri 2756 | . . 3 ⊢ (𝑄‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
| 7 | fnresi 6615 | . . . 4 ⊢ ( I ↾ ℕ) Fn ℕ | |
| 8 | c0ex 11113 | . . . . 5 ⊢ 0 ∈ V | |
| 9 | snex 5376 | . . . . 5 ⊢ {〈0, 𝑃〉} ∈ V | |
| 10 | 8, 9 | fnsn 6544 | . . . 4 ⊢ {〈0, {〈0, 𝑃〉}〉} Fn {0} |
| 11 | 0nnn 12168 | . . . . . 6 ⊢ ¬ 0 ∈ ℕ | |
| 12 | disjsn 4663 | . . . . . 6 ⊢ ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ) | |
| 13 | 11, 12 | mpbir 231 | . . . . 5 ⊢ (ℕ ∩ {0}) = ∅ |
| 14 | 8 | snid 4614 | . . . . 5 ⊢ 0 ∈ {0} |
| 15 | 13, 14 | pm3.2i 470 | . . . 4 ⊢ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0}) |
| 16 | fvun2 6920 | . . . 4 ⊢ ((( I ↾ ℕ) Fn ℕ ∧ {〈0, {〈0, 𝑃〉}〉} Fn {0} ∧ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0})) → ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0)) | |
| 17 | 7, 10, 15, 16 | mp3an 1463 | . . 3 ⊢ ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
| 18 | 6, 17 | eqtri 2756 | . 2 ⊢ (𝑄‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
| 19 | 8, 9 | fvsn 7121 | . 2 ⊢ ({〈0, {〈0, 𝑃〉}〉}‘0) = {〈0, 𝑃〉} |
| 20 | 18, 19 | eqtri 2756 | 1 ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4549 {csn 4575 〈cop 4581 ∪ cuni 4858 ∪ ciun 4941 ↦ cmpt 5174 I cid 5513 × cxp 5617 ◡ccnv 5618 ran crn 5620 ↾ cres 5621 “ cima 5622 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 ℩crio 7308 (class class class)co 7352 ∈ cmpo 7354 1st c1st 7925 2nd c2nd 7926 0cc0 11013 1c1 11014 − cmin 11351 / cdiv 11781 ℕcn 12132 ℤcz 12475 (,)cioo 13247 [,]cicc 13250 ...cfz 13409 seqcseq 13910 ↾t crest 17326 topGenctg 17343 Cn ccn 23140 Homeochmeo 23669 IIcii 24796 CovMap ccvm 35320 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-seq 13911 |
| This theorem is referenced by: cvmliftlem7 35356 cvmliftlem13 35361 |
| Copyright terms: Public domain | W3C validator |