![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem4 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 34779. The function π will be our lifted path, defined piecewise on each section [(π β 1) / π, π / π] for π β (1...π). For π = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to π. (Contributed by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | β’ π = (π β π½ β¦ {π β (π« πΆ β {β }) β£ (βͺ π = (β‘πΉ β π) β§ βπ’ β π (βπ£ β (π β {π’})(π’ β© π£) = β β§ (πΉ βΎ π’) β ((πΆ βΎt π’)Homeo(π½ βΎt π))))}) |
cvmliftlem.b | β’ π΅ = βͺ πΆ |
cvmliftlem.x | β’ π = βͺ π½ |
cvmliftlem.f | β’ (π β πΉ β (πΆ CovMap π½)) |
cvmliftlem.g | β’ (π β πΊ β (II Cn π½)) |
cvmliftlem.p | β’ (π β π β π΅) |
cvmliftlem.e | β’ (π β (πΉβπ) = (πΊβ0)) |
cvmliftlem.n | β’ (π β π β β) |
cvmliftlem.t | β’ (π β π:(1...π)βΆβͺ π β π½ ({π} Γ (πβπ))) |
cvmliftlem.a | β’ (π β βπ β (1...π)(πΊ β (((π β 1) / π)[,](π / π))) β (1st β(πβπ))) |
cvmliftlem.l | β’ πΏ = (topGenβran (,)) |
cvmliftlem.q | β’ π = seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})) |
Ref | Expression |
---|---|
cvmliftlem4 | β’ (πβ0) = {β¨0, πβ©} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem.q | . . . . 5 β’ π = seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})) | |
2 | 1 | fveq1i 6882 | . . . 4 β’ (πβ0) = (seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©}))β0) |
3 | 0z 12566 | . . . . 5 β’ 0 β β€ | |
4 | seq1 13976 | . . . . 5 β’ (0 β β€ β (seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©}))β0) = ((( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})β0)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 β’ (seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©}))β0) = ((( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})β0) |
6 | 2, 5 | eqtri 2752 | . . 3 β’ (πβ0) = ((( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})β0) |
7 | fnresi 6669 | . . . 4 β’ ( I βΎ β) Fn β | |
8 | c0ex 11205 | . . . . 5 β’ 0 β V | |
9 | snex 5421 | . . . . 5 β’ {β¨0, πβ©} β V | |
10 | 8, 9 | fnsn 6596 | . . . 4 β’ {β¨0, {β¨0, πβ©}β©} Fn {0} |
11 | 0nnn 12245 | . . . . . 6 β’ Β¬ 0 β β | |
12 | disjsn 4707 | . . . . . 6 β’ ((β β© {0}) = β β Β¬ 0 β β) | |
13 | 11, 12 | mpbir 230 | . . . . 5 β’ (β β© {0}) = β |
14 | 8 | snid 4656 | . . . . 5 β’ 0 β {0} |
15 | 13, 14 | pm3.2i 470 | . . . 4 β’ ((β β© {0}) = β β§ 0 β {0}) |
16 | fvun2 6973 | . . . 4 β’ ((( I βΎ β) Fn β β§ {β¨0, {β¨0, πβ©}β©} Fn {0} β§ ((β β© {0}) = β β§ 0 β {0})) β ((( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})β0) = ({β¨0, {β¨0, πβ©}β©}β0)) | |
17 | 7, 10, 15, 16 | mp3an 1457 | . . 3 β’ ((( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})β0) = ({β¨0, {β¨0, πβ©}β©}β0) |
18 | 6, 17 | eqtri 2752 | . 2 β’ (πβ0) = ({β¨0, {β¨0, πβ©}β©}β0) |
19 | 8, 9 | fvsn 7171 | . 2 β’ ({β¨0, {β¨0, πβ©}β©}β0) = {β¨0, πβ©} |
20 | 18, 19 | eqtri 2752 | 1 β’ (πβ0) = {β¨0, πβ©} |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 {crab 3424 Vcvv 3466 β cdif 3937 βͺ cun 3938 β© cin 3939 β wss 3940 β c0 4314 π« cpw 4594 {csn 4620 β¨cop 4626 βͺ cuni 4899 βͺ ciun 4987 β¦ cmpt 5221 I cid 5563 Γ cxp 5664 β‘ccnv 5665 ran crn 5667 βΎ cres 5668 β cima 5669 Fn wfn 6528 βΆwf 6529 βcfv 6533 β©crio 7356 (class class class)co 7401 β cmpo 7403 1st c1st 7966 2nd c2nd 7967 0cc0 11106 1c1 11107 β cmin 11441 / cdiv 11868 βcn 12209 β€cz 12555 (,)cioo 13321 [,]cicc 13324 ...cfz 13481 seqcseq 13963 βΎt crest 17365 topGenctg 17382 Cn ccn 23050 Homeochmeo 23579 IIcii 24717 CovMap ccvm 34735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-n0 12470 df-z 12556 df-uz 12820 df-seq 13964 |
This theorem is referenced by: cvmliftlem7 34771 cvmliftlem13 34776 |
Copyright terms: Public domain | W3C validator |