Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem4 | Structured version Visualization version GIF version |
Description: Lemma for cvmlift 33261. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.) |
Ref | Expression |
---|---|
cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
cvmliftlem.q | ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) |
Ref | Expression |
---|---|
cvmliftlem4 | ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmliftlem.q | . . . . 5 ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) | |
2 | 1 | fveq1i 6775 | . . . 4 ⊢ (𝑄‘0) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) |
3 | 0z 12330 | . . . . 5 ⊢ 0 ∈ ℤ | |
4 | seq1 13734 | . . . . 5 ⊢ (0 ∈ ℤ → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0)) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
6 | 2, 5 | eqtri 2766 | . . 3 ⊢ (𝑄‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
7 | fnresi 6561 | . . . 4 ⊢ ( I ↾ ℕ) Fn ℕ | |
8 | c0ex 10969 | . . . . 5 ⊢ 0 ∈ V | |
9 | snex 5354 | . . . . 5 ⊢ {〈0, 𝑃〉} ∈ V | |
10 | 8, 9 | fnsn 6492 | . . . 4 ⊢ {〈0, {〈0, 𝑃〉}〉} Fn {0} |
11 | 0nnn 12009 | . . . . . 6 ⊢ ¬ 0 ∈ ℕ | |
12 | disjsn 4647 | . . . . . 6 ⊢ ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ) | |
13 | 11, 12 | mpbir 230 | . . . . 5 ⊢ (ℕ ∩ {0}) = ∅ |
14 | 8 | snid 4597 | . . . . 5 ⊢ 0 ∈ {0} |
15 | 13, 14 | pm3.2i 471 | . . . 4 ⊢ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0}) |
16 | fvun2 6860 | . . . 4 ⊢ ((( I ↾ ℕ) Fn ℕ ∧ {〈0, {〈0, 𝑃〉}〉} Fn {0} ∧ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0})) → ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0)) | |
17 | 7, 10, 15, 16 | mp3an 1460 | . . 3 ⊢ ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
18 | 6, 17 | eqtri 2766 | . 2 ⊢ (𝑄‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
19 | 8, 9 | fvsn 7053 | . 2 ⊢ ({〈0, {〈0, 𝑃〉}〉}‘0) = {〈0, 𝑃〉} |
20 | 18, 19 | eqtri 2766 | 1 ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 〈cop 4567 ∪ cuni 4839 ∪ ciun 4924 ↦ cmpt 5157 I cid 5488 × cxp 5587 ◡ccnv 5588 ran crn 5590 ↾ cres 5591 “ cima 5592 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 ∈ cmpo 7277 1st c1st 7829 2nd c2nd 7830 0cc0 10871 1c1 10872 − cmin 11205 / cdiv 11632 ℕcn 11973 ℤcz 12319 (,)cioo 13079 [,]cicc 13082 ...cfz 13239 seqcseq 13721 ↾t crest 17131 topGenctg 17148 Cn ccn 22375 Homeochmeo 22904 IIcii 24038 CovMap ccvm 33217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 |
This theorem is referenced by: cvmliftlem7 33253 cvmliftlem13 33258 |
Copyright terms: Public domain | W3C validator |