| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmliftlem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for cvmlift 35326. The function 𝑄 will be our lifted path, defined piecewise on each section [(𝑀 − 1) / 𝑁, 𝑀 / 𝑁] for 𝑀 ∈ (1...𝑁). For 𝑀 = 0, it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to 𝑃. (Contributed by Mario Carneiro, 15-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmliftlem.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| cvmliftlem.b | ⊢ 𝐵 = ∪ 𝐶 |
| cvmliftlem.x | ⊢ 𝑋 = ∪ 𝐽 |
| cvmliftlem.f | ⊢ (𝜑 → 𝐹 ∈ (𝐶 CovMap 𝐽)) |
| cvmliftlem.g | ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) |
| cvmliftlem.p | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
| cvmliftlem.e | ⊢ (𝜑 → (𝐹‘𝑃) = (𝐺‘0)) |
| cvmliftlem.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| cvmliftlem.t | ⊢ (𝜑 → 𝑇:(1...𝑁)⟶∪ 𝑗 ∈ 𝐽 ({𝑗} × (𝑆‘𝑗))) |
| cvmliftlem.a | ⊢ (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇‘𝑘))) |
| cvmliftlem.l | ⊢ 𝐿 = (topGen‘ran (,)) |
| cvmliftlem.q | ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) |
| Ref | Expression |
|---|---|
| cvmliftlem4 | ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmliftlem.q | . . . . 5 ⊢ 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})) | |
| 2 | 1 | fveq1i 6882 | . . . 4 ⊢ (𝑄‘0) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) |
| 3 | 0z 12604 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 4 | seq1 14037 | . . . . 5 ⊢ (0 ∈ ℤ → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0)) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ (◡(𝐹 ↾ (℩𝑏 ∈ (2nd ‘(𝑇‘𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺‘𝑧)))), (( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉}))‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
| 6 | 2, 5 | eqtri 2759 | . . 3 ⊢ (𝑄‘0) = ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) |
| 7 | fnresi 6672 | . . . 4 ⊢ ( I ↾ ℕ) Fn ℕ | |
| 8 | c0ex 11234 | . . . . 5 ⊢ 0 ∈ V | |
| 9 | snex 5411 | . . . . 5 ⊢ {〈0, 𝑃〉} ∈ V | |
| 10 | 8, 9 | fnsn 6599 | . . . 4 ⊢ {〈0, {〈0, 𝑃〉}〉} Fn {0} |
| 11 | 0nnn 12281 | . . . . . 6 ⊢ ¬ 0 ∈ ℕ | |
| 12 | disjsn 4692 | . . . . . 6 ⊢ ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ) | |
| 13 | 11, 12 | mpbir 231 | . . . . 5 ⊢ (ℕ ∩ {0}) = ∅ |
| 14 | 8 | snid 4643 | . . . . 5 ⊢ 0 ∈ {0} |
| 15 | 13, 14 | pm3.2i 470 | . . . 4 ⊢ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0}) |
| 16 | fvun2 6976 | . . . 4 ⊢ ((( I ↾ ℕ) Fn ℕ ∧ {〈0, {〈0, 𝑃〉}〉} Fn {0} ∧ ((ℕ ∩ {0}) = ∅ ∧ 0 ∈ {0})) → ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0)) | |
| 17 | 7, 10, 15, 16 | mp3an 1463 | . . 3 ⊢ ((( I ↾ ℕ) ∪ {〈0, {〈0, 𝑃〉}〉})‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
| 18 | 6, 17 | eqtri 2759 | . 2 ⊢ (𝑄‘0) = ({〈0, {〈0, 𝑃〉}〉}‘0) |
| 19 | 8, 9 | fvsn 7178 | . 2 ⊢ ({〈0, {〈0, 𝑃〉}〉}‘0) = {〈0, 𝑃〉} |
| 20 | 18, 19 | eqtri 2759 | 1 ⊢ (𝑄‘0) = {〈0, 𝑃〉} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 Vcvv 3464 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 〈cop 4612 ∪ cuni 4888 ∪ ciun 4972 ↦ cmpt 5206 I cid 5552 × cxp 5657 ◡ccnv 5658 ran crn 5660 ↾ cres 5661 “ cima 5662 Fn wfn 6531 ⟶wf 6532 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 ∈ cmpo 7412 1st c1st 7991 2nd c2nd 7992 0cc0 11134 1c1 11135 − cmin 11471 / cdiv 11899 ℕcn 12245 ℤcz 12593 (,)cioo 13367 [,]cicc 13370 ...cfz 13529 seqcseq 14024 ↾t crest 17439 topGenctg 17456 Cn ccn 23167 Homeochmeo 23696 IIcii 24824 CovMap ccvm 35282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 |
| This theorem is referenced by: cvmliftlem7 35318 cvmliftlem13 35323 |
| Copyright terms: Public domain | W3C validator |