![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnb | Structured version Visualization version GIF version |
Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) |
Ref | Expression |
---|---|
fnsnb.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fnsnb | ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsnr 7156 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 → 𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩)) | |
2 | df-fn 6537 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴})) | |
3 | fnsnb.1 | . . . . . . . . . . 11 ⊢ 𝐴 ∈ V | |
4 | 3 | snid 4657 | . . . . . . . . . 10 ⊢ 𝐴 ∈ {𝐴} |
5 | eleq2 2814 | . . . . . . . . . 10 ⊢ (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ {𝐴})) | |
6 | 4, 5 | mpbiri 258 | . . . . . . . . 9 ⊢ (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹) |
7 | 6 | anim2i 616 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
8 | 2, 7 | sylbi 216 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
9 | funfvop 7042 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹) |
11 | eleq1 2813 | . . . . . 6 ⊢ (𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩ → (𝑥 ∈ 𝐹 ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹)) | |
12 | 10, 11 | syl5ibrcom 246 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩ → 𝑥 ∈ 𝐹)) |
13 | 1, 12 | impbid 211 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩)) |
14 | velsn 4637 | . . . 4 ⊢ (𝑥 ∈ {⟨𝐴, (𝐹‘𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩) | |
15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ {⟨𝐴, (𝐹‘𝐴)⟩})) |
16 | 15 | eqrdv 2722 | . 2 ⊢ (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}) |
17 | fvex 6895 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
18 | 3, 17 | fnsn 6597 | . . 3 ⊢ {⟨𝐴, (𝐹‘𝐴)⟩} Fn {𝐴} |
19 | fneq1 6631 | . . 3 ⊢ (𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹‘𝐴)⟩} Fn {𝐴})) | |
20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩} → 𝐹 Fn {𝐴}) |
21 | 16, 20 | impbii 208 | 1 ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 {csn 4621 ⟨cop 4627 dom cdm 5667 Fun wfun 6528 Fn wfn 6529 ‘cfv 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 |
This theorem is referenced by: fnprb 7202 |
Copyright terms: Public domain | W3C validator |