![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnb | Structured version Visualization version GIF version |
Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) |
Ref | Expression |
---|---|
fnsnb.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fnsnb | ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsnr 7199 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 → 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) | |
2 | df-fn 6576 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴})) | |
3 | fnsnb.1 | . . . . . . . . . . 11 ⊢ 𝐴 ∈ V | |
4 | 3 | snid 4684 | . . . . . . . . . 10 ⊢ 𝐴 ∈ {𝐴} |
5 | eleq2 2833 | . . . . . . . . . 10 ⊢ (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ {𝐴})) | |
6 | 4, 5 | mpbiri 258 | . . . . . . . . 9 ⊢ (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹) |
7 | 6 | anim2i 616 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
8 | 2, 7 | sylbi 217 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
9 | funfvop 7083 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹) |
11 | eleq1 2832 | . . . . . 6 ⊢ (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → (𝑥 ∈ 𝐹 ↔ 〈𝐴, (𝐹‘𝐴)〉 ∈ 𝐹)) | |
12 | 10, 11 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 = 〈𝐴, (𝐹‘𝐴)〉 → 𝑥 ∈ 𝐹)) |
13 | 1, 12 | impbid 212 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉)) |
14 | velsn 4664 | . . . 4 ⊢ (𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉} ↔ 𝑥 = 〈𝐴, (𝐹‘𝐴)〉) | |
15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ {〈𝐴, (𝐹‘𝐴)〉})) |
16 | 15 | eqrdv 2738 | . 2 ⊢ (𝐹 Fn {𝐴} → 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
17 | fvex 6933 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
18 | 3, 17 | fnsn 6636 | . . 3 ⊢ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴} |
19 | fneq1 6670 | . . 3 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → (𝐹 Fn {𝐴} ↔ {〈𝐴, (𝐹‘𝐴)〉} Fn {𝐴})) | |
20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = {〈𝐴, (𝐹‘𝐴)〉} → 𝐹 Fn {𝐴}) |
21 | 16, 20 | impbii 209 | 1 ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {〈𝐴, (𝐹‘𝐴)〉}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 〈cop 4654 dom cdm 5700 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 |
This theorem is referenced by: fnprb 7245 |
Copyright terms: Public domain | W3C validator |