MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnsnb Structured version   Visualization version   GIF version

Theorem fnsnb 7113
Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.)
Hypothesis
Ref Expression
fnsnb.1 𝐴 ∈ V
Assertion
Ref Expression
fnsnb (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})

Proof of Theorem fnsnb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fnsnr 7112 . . . . 5 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
2 df-fn 6500 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴}))
3 fnsnb.1 . . . . . . . . . . 11 𝐴 ∈ V
43snid 4623 . . . . . . . . . 10 𝐴 ∈ {𝐴}
5 eleq2 2823 . . . . . . . . . 10 (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹𝐴 ∈ {𝐴}))
64, 5mpbiri 258 . . . . . . . . 9 (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹)
76anim2i 618 . . . . . . . 8 ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹𝐴 ∈ dom 𝐹))
82, 7sylbi 216 . . . . . . 7 (𝐹 Fn {𝐴} → (Fun 𝐹𝐴 ∈ dom 𝐹))
9 funfvop 7001 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
108, 9syl 17 . . . . . 6 (𝐹 Fn {𝐴} → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
11 eleq1 2822 . . . . . 6 (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑥𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1210, 11syl5ibrcom 247 . . . . 5 (𝐹 Fn {𝐴} → (𝑥 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑥𝐹))
131, 12impbid 211 . . . 4 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 = ⟨𝐴, (𝐹𝐴)⟩))
14 velsn 4603 . . . 4 (𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹𝐴)⟩)
1513, 14bitr4di 289 . . 3 (𝐹 Fn {𝐴} → (𝑥𝐹𝑥 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
1615eqrdv 2731 . 2 (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
17 fvex 6856 . . . 4 (𝐹𝐴) ∈ V
183, 17fnsn 6560 . . 3 {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}
19 fneq1 6594 . . 3 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹𝐴)⟩} Fn {𝐴}))
2018, 19mpbiri 258 . 2 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} → 𝐹 Fn {𝐴})
2116, 20impbii 208 1 (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3444  {csn 4587  cop 4593  dom cdm 5634  Fun wfun 6491   Fn wfn 6492  cfv 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505
This theorem is referenced by:  fnprb  7159
  Copyright terms: Public domain W3C validator