![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnsnb | Structured version Visualization version GIF version |
Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) Revised to add reverse implication. (Revised by NM, 29-Dec-2018.) |
Ref | Expression |
---|---|
fnsnb.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
fnsnb | ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnsnr 7112 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 → 𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩)) | |
2 | df-fn 6500 | . . . . . . . 8 ⊢ (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴})) | |
3 | fnsnb.1 | . . . . . . . . . . 11 ⊢ 𝐴 ∈ V | |
4 | 3 | snid 4623 | . . . . . . . . . 10 ⊢ 𝐴 ∈ {𝐴} |
5 | eleq2 2823 | . . . . . . . . . 10 ⊢ (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ {𝐴})) | |
6 | 4, 5 | mpbiri 258 | . . . . . . . . 9 ⊢ (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹) |
7 | 6 | anim2i 618 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
8 | 2, 7 | sylbi 216 | . . . . . . 7 ⊢ (𝐹 Fn {𝐴} → (Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹)) |
9 | funfvop 7001 | . . . . . . 7 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹) | |
10 | 8, 9 | syl 17 | . . . . . 6 ⊢ (𝐹 Fn {𝐴} → ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹) |
11 | eleq1 2822 | . . . . . 6 ⊢ (𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩ → (𝑥 ∈ 𝐹 ↔ ⟨𝐴, (𝐹‘𝐴)⟩ ∈ 𝐹)) | |
12 | 10, 11 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐹 Fn {𝐴} → (𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩ → 𝑥 ∈ 𝐹)) |
13 | 1, 12 | impbid 211 | . . . 4 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩)) |
14 | velsn 4603 | . . . 4 ⊢ (𝑥 ∈ {⟨𝐴, (𝐹‘𝐴)⟩} ↔ 𝑥 = ⟨𝐴, (𝐹‘𝐴)⟩) | |
15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝐹 Fn {𝐴} → (𝑥 ∈ 𝐹 ↔ 𝑥 ∈ {⟨𝐴, (𝐹‘𝐴)⟩})) |
16 | 15 | eqrdv 2731 | . 2 ⊢ (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}) |
17 | fvex 6856 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
18 | 3, 17 | fnsn 6560 | . . 3 ⊢ {⟨𝐴, (𝐹‘𝐴)⟩} Fn {𝐴} |
19 | fneq1 6594 | . . 3 ⊢ (𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩} → (𝐹 Fn {𝐴} ↔ {⟨𝐴, (𝐹‘𝐴)⟩} Fn {𝐴})) | |
20 | 18, 19 | mpbiri 258 | . 2 ⊢ (𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩} → 𝐹 Fn {𝐴}) |
21 | 16, 20 | impbii 208 | 1 ⊢ (𝐹 Fn {𝐴} ↔ 𝐹 = {⟨𝐴, (𝐹‘𝐴)⟩}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3444 {csn 4587 ⟨cop 4593 dom cdm 5634 Fun wfun 6491 Fn wfn 6492 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 |
This theorem is referenced by: fnprb 7159 |
Copyright terms: Public domain | W3C validator |