![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem11 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 28828. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem10.1 | ⊢ 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem11 | ⊢ (𝑄‘(𝐼 + 1)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem10.1 | . . 3 ⊢ 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | |
2 | 1 | fveq1i 6895 | . 2 ⊢ (𝑄‘(𝐼 + 1)) = (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) |
3 | ovex 7450 | . . . 4 ⊢ (𝐼 + 1) ∈ V | |
4 | 1ex 11240 | . . . 4 ⊢ 1 ∈ V | |
5 | 3, 4 | fnsn 6610 | . . 3 ⊢ {⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)} |
6 | c0ex 11238 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | fconst 6781 | . . . 4 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} |
8 | ffn 6721 | . . . 4 ⊢ ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) |
10 | disjdif 4472 | . . . 4 ⊢ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ | |
11 | 3 | snid 4665 | . . . 4 ⊢ (𝐼 + 1) ∈ {(𝐼 + 1)} |
12 | 10, 11 | pm3.2i 469 | . . 3 ⊢ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)}) |
13 | fvun1 6986 | . . 3 ⊢ (({⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)})) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({⟨(𝐼 + 1), 1⟩}‘(𝐼 + 1))) | |
14 | 5, 9, 12, 13 | mp3an 1457 | . 2 ⊢ (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({⟨(𝐼 + 1), 1⟩}‘(𝐼 + 1)) |
15 | 3, 4 | fvsn 7188 | . 2 ⊢ ({⟨(𝐼 + 1), 1⟩}‘(𝐼 + 1)) = 1 |
16 | 2, 14, 15 | 3eqtri 2757 | 1 ⊢ (𝑄‘(𝐼 + 1)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3942 ∪ cun 3943 ∩ cin 3944 ∅c0 4323 {csn 4629 ⟨cop 4635 × cxp 5675 Fn wfn 6542 ⟶wf 6543 ‘cfv 6547 (class class class)co 7417 0cc0 11138 1c1 11139 + caddc 11141 ...cfz 13516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pr 5428 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-mulcl 11200 ax-i2m1 11206 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-fv 6555 df-ov 7420 |
This theorem is referenced by: axlowdimlem14 28822 axlowdimlem16 28824 |
Copyright terms: Public domain | W3C validator |