| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlowdimlem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for axlowdim 28940. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) |
| Ref | Expression |
|---|---|
| axlowdimlem10.1 | ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
| Ref | Expression |
|---|---|
| axlowdimlem11 | ⊢ (𝑄‘(𝐼 + 1)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlowdimlem10.1 | . . 3 ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | |
| 2 | 1 | fveq1i 6877 | . 2 ⊢ (𝑄‘(𝐼 + 1)) = (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) |
| 3 | ovex 7438 | . . . 4 ⊢ (𝐼 + 1) ∈ V | |
| 4 | 1ex 11231 | . . . 4 ⊢ 1 ∈ V | |
| 5 | 3, 4 | fnsn 6594 | . . 3 ⊢ {〈(𝐼 + 1), 1〉} Fn {(𝐼 + 1)} |
| 6 | c0ex 11229 | . . . . 5 ⊢ 0 ∈ V | |
| 7 | 6 | fconst 6764 | . . . 4 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} |
| 8 | ffn 6706 | . . . 4 ⊢ ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) |
| 10 | disjdif 4447 | . . . 4 ⊢ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ | |
| 11 | 3 | snid 4638 | . . . 4 ⊢ (𝐼 + 1) ∈ {(𝐼 + 1)} |
| 12 | 10, 11 | pm3.2i 470 | . . 3 ⊢ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)}) |
| 13 | fvun1 6970 | . . 3 ⊢ (({〈(𝐼 + 1), 1〉} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)})) → (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1))) | |
| 14 | 5, 9, 12, 13 | mp3an 1463 | . 2 ⊢ (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1)) |
| 15 | 3, 4 | fvsn 7173 | . 2 ⊢ ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1)) = 1 |
| 16 | 2, 14, 15 | 3eqtri 2762 | 1 ⊢ (𝑄‘(𝐼 + 1)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∖ cdif 3923 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 {csn 4601 〈cop 4607 × cxp 5652 Fn wfn 6526 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 + caddc 11132 ...cfz 13524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-mulcl 11191 ax-i2m1 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: axlowdimlem14 28934 axlowdimlem16 28936 |
| Copyright terms: Public domain | W3C validator |