MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem11 Structured version   Visualization version   GIF version

Theorem axlowdimlem11 26456
Description: Lemma for axlowdim 26465. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem11 (𝑄‘(𝐼 + 1)) = 1

Proof of Theorem axlowdimlem11
StepHypRef Expression
1 axlowdimlem10.1 . . 3 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
21fveq1i 6505 . 2 (𝑄‘(𝐼 + 1)) = (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1))
3 ovex 7014 . . . 4 (𝐼 + 1) ∈ V
4 1ex 10441 . . . 4 1 ∈ V
53, 4fnsn 6250 . . 3 {⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)}
6 c0ex 10439 . . . . 5 0 ∈ V
76fconst 6399 . . . 4 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}
8 ffn 6349 . . . 4 ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}))
97, 8ax-mp 5 . . 3 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})
10 disjdif 4307 . . . 4 ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅
113snid 4478 . . . 4 (𝐼 + 1) ∈ {(𝐼 + 1)}
1210, 11pm3.2i 463 . . 3 (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)})
13 fvun1 6588 . . 3 (({⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)})) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({⟨(𝐼 + 1), 1⟩}‘(𝐼 + 1)))
145, 9, 12, 13mp3an 1441 . 2 (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({⟨(𝐼 + 1), 1⟩}‘(𝐼 + 1))
153, 4fvsn 6772 . 2 ({⟨(𝐼 + 1), 1⟩}‘(𝐼 + 1)) = 1
162, 14, 153eqtri 2808 1 (𝑄‘(𝐼 + 1)) = 1
Colors of variables: wff setvar class
Syntax hints:  wa 387   = wceq 1508  wcel 2051  cdif 3828  cun 3829  cin 3830  c0 4181  {csn 4444  cop 4450   × cxp 5409   Fn wfn 6188  wf 6189  cfv 6193  (class class class)co 6982  0cc0 10341  1c1 10342   + caddc 10344  ...cfz 12714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-mulcl 10403  ax-i2m1 10409
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3419  df-sbc 3684  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-br 4935  df-opab 4997  df-mpt 5014  df-id 5316  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-fv 6201  df-ov 6985
This theorem is referenced by:  axlowdimlem14  26459  axlowdimlem16  26461
  Copyright terms: Public domain W3C validator