![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem11 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 28991. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem10.1 | ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem11 | ⊢ (𝑄‘(𝐼 + 1)) = 1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem10.1 | . . 3 ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | |
2 | 1 | fveq1i 6908 | . 2 ⊢ (𝑄‘(𝐼 + 1)) = (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) |
3 | ovex 7464 | . . . 4 ⊢ (𝐼 + 1) ∈ V | |
4 | 1ex 11255 | . . . 4 ⊢ 1 ∈ V | |
5 | 3, 4 | fnsn 6626 | . . 3 ⊢ {〈(𝐼 + 1), 1〉} Fn {(𝐼 + 1)} |
6 | c0ex 11253 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | fconst 6795 | . . . 4 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} |
8 | ffn 6737 | . . . 4 ⊢ ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) |
10 | disjdif 4478 | . . . 4 ⊢ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ | |
11 | 3 | snid 4667 | . . . 4 ⊢ (𝐼 + 1) ∈ {(𝐼 + 1)} |
12 | 10, 11 | pm3.2i 470 | . . 3 ⊢ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)}) |
13 | fvun1 7000 | . . 3 ⊢ (({〈(𝐼 + 1), 1〉} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)})) → (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1))) | |
14 | 5, 9, 12, 13 | mp3an 1460 | . 2 ⊢ (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1)) |
15 | 3, 4 | fvsn 7201 | . 2 ⊢ ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1)) = 1 |
16 | 2, 14, 15 | 3eqtri 2767 | 1 ⊢ (𝑄‘(𝐼 + 1)) = 1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∖ cdif 3960 ∪ cun 3961 ∩ cin 3962 ∅c0 4339 {csn 4631 〈cop 4637 × cxp 5687 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 + caddc 11156 ...cfz 13544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-mulcl 11215 ax-i2m1 11221 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 |
This theorem is referenced by: axlowdimlem14 28985 axlowdimlem16 28987 |
Copyright terms: Public domain | W3C validator |