| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axlowdimlem11 | Structured version Visualization version GIF version | ||
| Description: Lemma for axlowdim 28937. Calculate the value of 𝑄 at its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.) |
| Ref | Expression |
|---|---|
| axlowdimlem10.1 | ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
| Ref | Expression |
|---|---|
| axlowdimlem11 | ⊢ (𝑄‘(𝐼 + 1)) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axlowdimlem10.1 | . . 3 ⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | |
| 2 | 1 | fveq1i 6823 | . 2 ⊢ (𝑄‘(𝐼 + 1)) = (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) |
| 3 | ovex 7379 | . . . 4 ⊢ (𝐼 + 1) ∈ V | |
| 4 | 1ex 11105 | . . . 4 ⊢ 1 ∈ V | |
| 5 | 3, 4 | fnsn 6539 | . . 3 ⊢ {〈(𝐼 + 1), 1〉} Fn {(𝐼 + 1)} |
| 6 | c0ex 11103 | . . . . 5 ⊢ 0 ∈ V | |
| 7 | 6 | fconst 6709 | . . . 4 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} |
| 8 | ffn 6651 | . . . 4 ⊢ ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) |
| 10 | disjdif 4422 | . . . 4 ⊢ ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ | |
| 11 | 3 | snid 4615 | . . . 4 ⊢ (𝐼 + 1) ∈ {(𝐼 + 1)} |
| 12 | 10, 11 | pm3.2i 470 | . . 3 ⊢ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)}) |
| 13 | fvun1 6913 | . . 3 ⊢ (({〈(𝐼 + 1), 1〉} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ (𝐼 + 1) ∈ {(𝐼 + 1)})) → (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1))) | |
| 14 | 5, 9, 12, 13 | mp3an 1463 | . 2 ⊢ (({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘(𝐼 + 1)) = ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1)) |
| 15 | 3, 4 | fvsn 7115 | . 2 ⊢ ({〈(𝐼 + 1), 1〉}‘(𝐼 + 1)) = 1 |
| 16 | 2, 14, 15 | 3eqtri 2758 | 1 ⊢ (𝑄‘(𝐼 + 1)) = 1 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∖ cdif 3899 ∪ cun 3900 ∩ cin 3901 ∅c0 4283 {csn 4576 〈cop 4582 × cxp 5614 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 + caddc 11006 ...cfz 13404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-mulcl 11065 ax-i2m1 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: axlowdimlem14 28931 axlowdimlem16 28933 |
| Copyright terms: Public domain | W3C validator |