Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem5 Structured version   Visualization version   GIF version

Theorem cvmliftlem5 35283
Description: Lemma for cvmlift 35293. Definition of 𝑄 at a successor. This is a function defined on 𝑊 as (𝑇𝐼) ∘ 𝐺 where 𝐼 is the unique covering set of 2nd ‘(𝑇𝑀) that contains 𝑄(𝑀 − 1) evaluated at the last defined point, namely (𝑀 − 1) / 𝑁 (note that for 𝑀 = 1 this is using the seed value 𝑄(0)(0) = 𝑃). (Contributed by Mario Carneiro, 15-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem5 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem5
StepHypRef Expression
1 0z 12547 . . . 4 0 ∈ ℤ
2 simpr 484 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
3 nnuz 12843 . . . . . 6 ℕ = (ℤ‘1)
4 1e0p1 12698 . . . . . . 7 1 = (0 + 1)
54fveq2i 6864 . . . . . 6 (ℤ‘1) = (ℤ‘(0 + 1))
63, 5eqtri 2753 . . . . 5 ℕ = (ℤ‘(0 + 1))
72, 6eleqtrdi 2839 . . . 4 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ (ℤ‘(0 + 1)))
8 seqm1 13991 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ (ℤ‘(0 + 1))) → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
91, 7, 8sylancr 587 . . 3 ((𝜑𝑀 ∈ ℕ) → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
10 cvmliftlem.q . . . 4 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
1110fveq1i 6862 . . 3 (𝑄𝑀) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀)
1210fveq1i 6862 . . . 4 (𝑄‘(𝑀 − 1)) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))
1312oveq1i 7400 . . 3 ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀))
149, 11, 133eqtr4g 2790 . 2 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
15 0nnn 12229 . . . . . 6 ¬ 0 ∈ ℕ
16 disjsn 4678 . . . . . 6 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
1715, 16mpbir 231 . . . . 5 (ℕ ∩ {0}) = ∅
18 fnresi 6650 . . . . . 6 ( I ↾ ℕ) Fn ℕ
19 c0ex 11175 . . . . . . 7 0 ∈ V
20 snex 5394 . . . . . . 7 {⟨0, 𝑃⟩} ∈ V
2119, 20fnsn 6577 . . . . . 6 {⟨0, {⟨0, 𝑃⟩}⟩} Fn {0}
22 fvun1 6955 . . . . . 6 ((( I ↾ ℕ) Fn ℕ ∧ {⟨0, {⟨0, 𝑃⟩}⟩} Fn {0} ∧ ((ℕ ∩ {0}) = ∅ ∧ 𝑀 ∈ ℕ)) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
2318, 21, 22mp3an12 1453 . . . . 5 (((ℕ ∩ {0}) = ∅ ∧ 𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
2417, 2, 23sylancr 587 . . . 4 ((𝜑𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
25 fvresi 7150 . . . . 5 (𝑀 ∈ ℕ → (( I ↾ ℕ)‘𝑀) = 𝑀)
2625adantl 481 . . . 4 ((𝜑𝑀 ∈ ℕ) → (( I ↾ ℕ)‘𝑀) = 𝑀)
2724, 26eqtrd 2765 . . 3 ((𝜑𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = 𝑀)
2827oveq2d 7406 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)) = ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀))
29 fvexd 6876 . . 3 (𝜑 → (𝑄‘(𝑀 − 1)) ∈ V)
30 simpr 484 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀)
3130oveq1d 7405 . . . . . . . 8 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑚 − 1) = (𝑀 − 1))
3231oveq1d 7405 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝑚 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁))
3330oveq1d 7405 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑚 / 𝑁) = (𝑀 / 𝑁))
3432, 33oveq12d 7408 . . . . . 6 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
35 cvmliftlem5.3 . . . . . 6 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
3634, 35eqtr4di 2783 . . . . 5 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) = 𝑊)
3730fveq2d 6865 . . . . . . . . . 10 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑇𝑚) = (𝑇𝑀))
3837fveq2d 6865 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (2nd ‘(𝑇𝑚)) = (2nd ‘(𝑇𝑀)))
39 simpl 482 . . . . . . . . . . 11 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → 𝑥 = (𝑄‘(𝑀 − 1)))
4039, 32fveq12d 6868 . . . . . . . . . 10 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑥‘((𝑚 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
4140eleq1d 2814 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏 ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
4238, 41riotaeqbidv 7350 . . . . . . . 8 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
4342reseq2d 5953 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
4443cnveqd 5842 . . . . . 6 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
4544fveq1d 6863 . . . . 5 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))
4636, 45mpteq12dv 5197 . . . 4 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
47 eqid 2730 . . . 4 (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
48 ovex 7423 . . . . . 6 (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ∈ V
4935, 48eqeltri 2825 . . . . 5 𝑊 ∈ V
5049mptex 7200 . . . 4 (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) ∈ V
5146, 47, 50ovmpoa 7547 . . 3 (((𝑄‘(𝑀 − 1)) ∈ V ∧ 𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
5229, 51sylan 580 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
5314, 28, 523eqtrd 2769 1 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592  cop 4598   cuni 4874   ciun 4958  cmpt 5191   I cid 5535   × cxp 5639  ccnv 5640  ran crn 5642  cres 5643  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  crio 7346  (class class class)co 7390  cmpo 7392  1st c1st 7969  2nd c2nd 7970  0cc0 11075  1c1 11076   + caddc 11078  cmin 11412   / cdiv 11842  cn 12193  cz 12536  cuz 12800  (,)cioo 13313  [,]cicc 13316  ...cfz 13475  seqcseq 13973  t crest 17390  topGenctg 17407   Cn ccn 23118  Homeochmeo 23647  IIcii 24775   CovMap ccvm 35249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-seq 13974
This theorem is referenced by:  cvmliftlem6  35284  cvmliftlem8  35286  cvmliftlem9  35287
  Copyright terms: Public domain W3C validator