Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem5 Structured version   Visualization version   GIF version

Theorem cvmliftlem5 35261
Description: Lemma for cvmlift 35271. Definition of 𝑄 at a successor. This is a function defined on 𝑊 as (𝑇𝐼) ∘ 𝐺 where 𝐼 is the unique covering set of 2nd ‘(𝑇𝑀) that contains 𝑄(𝑀 − 1) evaluated at the last defined point, namely (𝑀 − 1) / 𝑁 (note that for 𝑀 = 1 this is using the seed value 𝑄(0)(0) = 𝑃). (Contributed by Mario Carneiro, 15-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem5 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem5
StepHypRef Expression
1 0z 12500 . . . 4 0 ∈ ℤ
2 simpr 484 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
3 nnuz 12796 . . . . . 6 ℕ = (ℤ‘1)
4 1e0p1 12651 . . . . . . 7 1 = (0 + 1)
54fveq2i 6829 . . . . . 6 (ℤ‘1) = (ℤ‘(0 + 1))
63, 5eqtri 2752 . . . . 5 ℕ = (ℤ‘(0 + 1))
72, 6eleqtrdi 2838 . . . 4 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ (ℤ‘(0 + 1)))
8 seqm1 13944 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ (ℤ‘(0 + 1))) → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
91, 7, 8sylancr 587 . . 3 ((𝜑𝑀 ∈ ℕ) → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
10 cvmliftlem.q . . . 4 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
1110fveq1i 6827 . . 3 (𝑄𝑀) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀)
1210fveq1i 6827 . . . 4 (𝑄‘(𝑀 − 1)) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))
1312oveq1i 7363 . . 3 ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀))
149, 11, 133eqtr4g 2789 . 2 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
15 0nnn 12182 . . . . . 6 ¬ 0 ∈ ℕ
16 disjsn 4665 . . . . . 6 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
1715, 16mpbir 231 . . . . 5 (ℕ ∩ {0}) = ∅
18 fnresi 6615 . . . . . 6 ( I ↾ ℕ) Fn ℕ
19 c0ex 11128 . . . . . . 7 0 ∈ V
20 snex 5378 . . . . . . 7 {⟨0, 𝑃⟩} ∈ V
2119, 20fnsn 6544 . . . . . 6 {⟨0, {⟨0, 𝑃⟩}⟩} Fn {0}
22 fvun1 6918 . . . . . 6 ((( I ↾ ℕ) Fn ℕ ∧ {⟨0, {⟨0, 𝑃⟩}⟩} Fn {0} ∧ ((ℕ ∩ {0}) = ∅ ∧ 𝑀 ∈ ℕ)) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
2318, 21, 22mp3an12 1453 . . . . 5 (((ℕ ∩ {0}) = ∅ ∧ 𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
2417, 2, 23sylancr 587 . . . 4 ((𝜑𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
25 fvresi 7113 . . . . 5 (𝑀 ∈ ℕ → (( I ↾ ℕ)‘𝑀) = 𝑀)
2625adantl 481 . . . 4 ((𝜑𝑀 ∈ ℕ) → (( I ↾ ℕ)‘𝑀) = 𝑀)
2724, 26eqtrd 2764 . . 3 ((𝜑𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = 𝑀)
2827oveq2d 7369 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)) = ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀))
29 fvexd 6841 . . 3 (𝜑 → (𝑄‘(𝑀 − 1)) ∈ V)
30 simpr 484 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀)
3130oveq1d 7368 . . . . . . . 8 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑚 − 1) = (𝑀 − 1))
3231oveq1d 7368 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝑚 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁))
3330oveq1d 7368 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑚 / 𝑁) = (𝑀 / 𝑁))
3432, 33oveq12d 7371 . . . . . 6 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
35 cvmliftlem5.3 . . . . . 6 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
3634, 35eqtr4di 2782 . . . . 5 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) = 𝑊)
3730fveq2d 6830 . . . . . . . . . 10 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑇𝑚) = (𝑇𝑀))
3837fveq2d 6830 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (2nd ‘(𝑇𝑚)) = (2nd ‘(𝑇𝑀)))
39 simpl 482 . . . . . . . . . . 11 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → 𝑥 = (𝑄‘(𝑀 − 1)))
4039, 32fveq12d 6833 . . . . . . . . . 10 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑥‘((𝑚 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
4140eleq1d 2813 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏 ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
4238, 41riotaeqbidv 7313 . . . . . . . 8 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
4342reseq2d 5934 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
4443cnveqd 5822 . . . . . 6 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
4544fveq1d 6828 . . . . 5 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))
4636, 45mpteq12dv 5182 . . . 4 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
47 eqid 2729 . . . 4 (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
48 ovex 7386 . . . . . 6 (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ∈ V
4935, 48eqeltri 2824 . . . . 5 𝑊 ∈ V
5049mptex 7163 . . . 4 (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) ∈ V
5146, 47, 50ovmpoa 7508 . . 3 (((𝑄‘(𝑀 − 1)) ∈ V ∧ 𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
5229, 51sylan 580 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
5314, 28, 523eqtrd 2768 1 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cdif 3902  cun 3903  cin 3904  wss 3905  c0 4286  𝒫 cpw 4553  {csn 4579  cop 4585   cuni 4861   ciun 4944  cmpt 5176   I cid 5517   × cxp 5621  ccnv 5622  ran crn 5624  cres 5625  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  crio 7309  (class class class)co 7353  cmpo 7355  1st c1st 7929  2nd c2nd 7930  0cc0 11028  1c1 11029   + caddc 11031  cmin 11365   / cdiv 11795  cn 12146  cz 12489  cuz 12753  (,)cioo 13266  [,]cicc 13269  ...cfz 13428  seqcseq 13926  t crest 17342  topGenctg 17359   Cn ccn 23127  Homeochmeo 23656  IIcii 24784   CovMap ccvm 35227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-z 12490  df-uz 12754  df-seq 13927
This theorem is referenced by:  cvmliftlem6  35262  cvmliftlem8  35264  cvmliftlem9  35265
  Copyright terms: Public domain W3C validator