Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem5 Structured version   Visualization version   GIF version

Theorem cvmliftlem5 32138
Description: Lemma for cvmlift 32148. Definition of 𝑄 at a successor. This is a function defined on 𝑊 as (𝑇𝐼) ∘ 𝐺 where 𝐼 is the unique covering set of 2nd ‘(𝑇𝑀) that contains 𝑄(𝑀 − 1) evaluated at the last defined point, namely (𝑀 − 1) / 𝑁 (note that for 𝑀 = 1 this is using the seed value 𝑄(0)(0) = 𝑃). (Contributed by Mario Carneiro, 15-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem5 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem5
StepHypRef Expression
1 0z 11842 . . . 4 0 ∈ ℤ
2 simpr 485 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
3 nnuz 12130 . . . . . 6 ℕ = (ℤ‘1)
4 1e0p1 11990 . . . . . . 7 1 = (0 + 1)
54fveq2i 6544 . . . . . 6 (ℤ‘1) = (ℤ‘(0 + 1))
63, 5eqtri 2818 . . . . 5 ℕ = (ℤ‘(0 + 1))
72, 6syl6eleq 2892 . . . 4 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ (ℤ‘(0 + 1)))
8 seqm1 13237 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ (ℤ‘(0 + 1))) → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
91, 7, 8sylancr 587 . . 3 ((𝜑𝑀 ∈ ℕ) → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
10 cvmliftlem.q . . . 4 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
1110fveq1i 6542 . . 3 (𝑄𝑀) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀)
1210fveq1i 6542 . . . 4 (𝑄‘(𝑀 − 1)) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))
1312oveq1i 7029 . . 3 ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀))
149, 11, 133eqtr4g 2855 . 2 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
15 0nnn 11523 . . . . . 6 ¬ 0 ∈ ℕ
16 disjsn 4556 . . . . . 6 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
1715, 16mpbir 232 . . . . 5 (ℕ ∩ {0}) = ∅
18 fnresi 6348 . . . . . 6 ( I ↾ ℕ) Fn ℕ
19 c0ex 10484 . . . . . . 7 0 ∈ V
20 snex 5226 . . . . . . 7 {⟨0, 𝑃⟩} ∈ V
2119, 20fnsn 6285 . . . . . 6 {⟨0, {⟨0, 𝑃⟩}⟩} Fn {0}
22 fvun1 6624 . . . . . 6 ((( I ↾ ℕ) Fn ℕ ∧ {⟨0, {⟨0, 𝑃⟩}⟩} Fn {0} ∧ ((ℕ ∩ {0}) = ∅ ∧ 𝑀 ∈ ℕ)) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
2318, 21, 22mp3an12 1443 . . . . 5 (((ℕ ∩ {0}) = ∅ ∧ 𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
2417, 2, 23sylancr 587 . . . 4 ((𝜑𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
25 fvresi 6801 . . . . 5 (𝑀 ∈ ℕ → (( I ↾ ℕ)‘𝑀) = 𝑀)
2625adantl 482 . . . 4 ((𝜑𝑀 ∈ ℕ) → (( I ↾ ℕ)‘𝑀) = 𝑀)
2724, 26eqtrd 2830 . . 3 ((𝜑𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = 𝑀)
2827oveq2d 7035 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)) = ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀))
29 fvexd 6556 . . 3 (𝜑 → (𝑄‘(𝑀 − 1)) ∈ V)
30 simpr 485 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀)
3130oveq1d 7034 . . . . . . . 8 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑚 − 1) = (𝑀 − 1))
3231oveq1d 7034 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝑚 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁))
3330oveq1d 7034 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑚 / 𝑁) = (𝑀 / 𝑁))
3432, 33oveq12d 7037 . . . . . 6 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
35 cvmliftlem5.3 . . . . . 6 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
3634, 35syl6eqr 2848 . . . . 5 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) = 𝑊)
3730fveq2d 6545 . . . . . . . . . 10 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑇𝑚) = (𝑇𝑀))
3837fveq2d 6545 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (2nd ‘(𝑇𝑚)) = (2nd ‘(𝑇𝑀)))
39 simpl 483 . . . . . . . . . . 11 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → 𝑥 = (𝑄‘(𝑀 − 1)))
4039, 32fveq12d 6548 . . . . . . . . . 10 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑥‘((𝑚 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
4140eleq1d 2866 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏 ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
4238, 41riotaeqbidv 6983 . . . . . . . 8 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
4342reseq2d 5737 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
4443cnveqd 5635 . . . . . 6 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
4544fveq1d 6543 . . . . 5 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))
4636, 45mpteq12dv 5048 . . . 4 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
47 eqid 2794 . . . 4 (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
48 ovex 7051 . . . . . 6 (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ∈ V
4935, 48eqeltri 2878 . . . . 5 𝑊 ∈ V
5049mptex 6855 . . . 4 (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) ∈ V
5146, 47, 50ovmpoa 7164 . . 3 (((𝑄‘(𝑀 − 1)) ∈ V ∧ 𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
5229, 51sylan 580 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
5314, 28, 523eqtrd 2834 1 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wcel 2080  wral 3104  {crab 3108  Vcvv 3436  cdif 3858  cun 3859  cin 3860  wss 3861  c0 4213  𝒫 cpw 4455  {csn 4474  cop 4480   cuni 4747   ciun 4827  cmpt 5043   I cid 5350   × cxp 5444  ccnv 5445  ran crn 5447  cres 5448  cima 5449   Fn wfn 6223  wf 6224  cfv 6228  crio 6979  (class class class)co 7019  cmpo 7021  1st c1st 7546  2nd c2nd 7547  0cc0 10386  1c1 10387   + caddc 10389  cmin 10719   / cdiv 11147  cn 11488  cz 11831  cuz 12093  (,)cioo 12588  [,]cicc 12591  ...cfz 12742  seqcseq 13219  t crest 16523  topGenctg 16540   Cn ccn 21516  Homeochmeo 22045  IIcii 23166   CovMap ccvm 32104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1778  ax-4 1792  ax-5 1889  ax-6 1948  ax-7 1993  ax-8 2082  ax-9 2090  ax-10 2111  ax-11 2125  ax-12 2140  ax-13 2343  ax-ext 2768  ax-rep 5084  ax-sep 5097  ax-nul 5104  ax-pow 5160  ax-pr 5224  ax-un 7322  ax-cnex 10442  ax-resscn 10443  ax-1cn 10444  ax-icn 10445  ax-addcl 10446  ax-addrcl 10447  ax-mulcl 10448  ax-mulrcl 10449  ax-mulcom 10450  ax-addass 10451  ax-mulass 10452  ax-distr 10453  ax-i2m1 10454  ax-1ne0 10455  ax-1rid 10456  ax-rnegex 10457  ax-rrecex 10458  ax-cnre 10459  ax-pre-lttri 10460  ax-pre-lttrn 10461  ax-pre-ltadd 10462  ax-pre-mulgt0 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1763  df-nf 1767  df-sb 2042  df-mo 2575  df-eu 2611  df-clab 2775  df-cleq 2787  df-clel 2862  df-nfc 2934  df-ne 2984  df-nel 3090  df-ral 3109  df-rex 3110  df-reu 3111  df-rab 3113  df-v 3438  df-sbc 3708  df-csb 3814  df-dif 3864  df-un 3866  df-in 3868  df-ss 3876  df-pss 3878  df-nul 4214  df-if 4384  df-pw 4457  df-sn 4475  df-pr 4477  df-tp 4479  df-op 4481  df-uni 4748  df-iun 4829  df-br 4965  df-opab 5027  df-mpt 5044  df-tr 5067  df-id 5351  df-eprel 5356  df-po 5365  df-so 5366  df-fr 5405  df-we 5407  df-xp 5452  df-rel 5453  df-cnv 5454  df-co 5455  df-dm 5456  df-rn 5457  df-res 5458  df-ima 5459  df-pred 6026  df-ord 6072  df-on 6073  df-lim 6074  df-suc 6075  df-iota 6192  df-fun 6230  df-fn 6231  df-f 6232  df-f1 6233  df-fo 6234  df-f1o 6235  df-fv 6236  df-riota 6980  df-ov 7022  df-oprab 7023  df-mpo 7024  df-om 7440  df-2nd 7549  df-wrecs 7801  df-recs 7863  df-rdg 7901  df-er 8142  df-en 8361  df-dom 8362  df-sdom 8363  df-pnf 10526  df-mnf 10527  df-xr 10528  df-ltxr 10529  df-le 10530  df-sub 10721  df-neg 10722  df-nn 11489  df-n0 11748  df-z 11832  df-uz 12094  df-seq 13220
This theorem is referenced by:  cvmliftlem6  32139  cvmliftlem8  32141  cvmliftlem9  32142
  Copyright terms: Public domain W3C validator