Step | Hyp | Ref
| Expression |
1 | | 0z 12565 |
. . . 4
β’ 0 β
β€ |
2 | | simpr 485 |
. . . . 5
β’ ((π β§ π β β) β π β β) |
3 | | nnuz 12861 |
. . . . . 6
β’ β =
(β€β₯β1) |
4 | | 1e0p1 12715 |
. . . . . . 7
β’ 1 = (0 +
1) |
5 | 4 | fveq2i 6891 |
. . . . . 6
β’
(β€β₯β1) = (β€β₯β(0 +
1)) |
6 | 3, 5 | eqtri 2760 |
. . . . 5
β’ β =
(β€β₯β(0 + 1)) |
7 | 2, 6 | eleqtrdi 2843 |
. . . 4
β’ ((π β§ π β β) β π β (β€β₯β(0 +
1))) |
8 | | seqm1 13981 |
. . . 4
β’ ((0
β β€ β§ π
β (β€β₯β(0 + 1))) β (seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©}))βπ) = ((seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©}))β(π β 1))(π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))))((( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©})βπ))) |
9 | 1, 7, 8 | sylancr 587 |
. . 3
β’ ((π β§ π β β) β (seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©}))βπ) = ((seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©}))β(π β 1))(π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))))((( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©})βπ))) |
10 | | cvmliftlem.q |
. . . 4
β’ π = seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©})) |
11 | 10 | fveq1i 6889 |
. . 3
β’ (πβπ) = (seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©}))βπ) |
12 | 10 | fveq1i 6889 |
. . . 4
β’ (πβ(π β 1)) = (seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©}))β(π β 1)) |
13 | 12 | oveq1i 7415 |
. . 3
β’ ((πβ(π β 1))(π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))))((( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©})βπ)) = ((seq0((π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))), (( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©}))β(π β 1))(π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))))((( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©})βπ)) |
14 | 9, 11, 13 | 3eqtr4g 2797 |
. 2
β’ ((π β§ π β β) β (πβπ) = ((πβ(π β 1))(π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))))((( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©})βπ))) |
15 | | 0nnn 12244 |
. . . . . 6
β’ Β¬ 0
β β |
16 | | disjsn 4714 |
. . . . . 6
β’ ((β
β© {0}) = β
β Β¬ 0 β β) |
17 | 15, 16 | mpbir 230 |
. . . . 5
β’ (β
β© {0}) = β
|
18 | | fnresi 6676 |
. . . . . 6
β’ ( I
βΎ β) Fn β |
19 | | c0ex 11204 |
. . . . . . 7
β’ 0 β
V |
20 | | snex 5430 |
. . . . . . 7
β’ {β¨0,
πβ©} β
V |
21 | 19, 20 | fnsn 6603 |
. . . . . 6
β’ {β¨0,
{β¨0, πβ©}β©}
Fn {0} |
22 | | fvun1 6979 |
. . . . . 6
β’ ((( I
βΎ β) Fn β β§ {β¨0, {β¨0, πβ©}β©} Fn {0} β§ ((β β©
{0}) = β
β§ π
β β)) β ((( I βΎ β) βͺ {β¨0, {β¨0, πβ©}β©})βπ) = (( I βΎ
β)βπ)) |
23 | 18, 21, 22 | mp3an12 1451 |
. . . . 5
β’
(((β β© {0}) = β
β§ π β β) β ((( I βΎ
β) βͺ {β¨0, {β¨0, πβ©}β©})βπ) = (( I βΎ β)βπ)) |
24 | 17, 2, 23 | sylancr 587 |
. . . 4
β’ ((π β§ π β β) β ((( I βΎ
β) βͺ {β¨0, {β¨0, πβ©}β©})βπ) = (( I βΎ β)βπ)) |
25 | | fvresi 7167 |
. . . . 5
β’ (π β β β (( I
βΎ β)βπ) =
π) |
26 | 25 | adantl 482 |
. . . 4
β’ ((π β§ π β β) β (( I βΎ
β)βπ) = π) |
27 | 24, 26 | eqtrd 2772 |
. . 3
β’ ((π β§ π β β) β ((( I βΎ
β) βͺ {β¨0, {β¨0, πβ©}β©})βπ) = π) |
28 | 27 | oveq2d 7421 |
. 2
β’ ((π β§ π β β) β ((πβ(π β 1))(π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))))((( I βΎ β) βͺ {β¨0,
{β¨0, πβ©}β©})βπ)) = ((πβ(π β 1))(π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))))π)) |
29 | | fvexd 6903 |
. . 3
β’ (π β (πβ(π β 1)) β V) |
30 | | simpr 485 |
. . . . . . . . 9
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β π = π) |
31 | 30 | oveq1d 7420 |
. . . . . . . 8
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (π β 1) = (π β 1)) |
32 | 31 | oveq1d 7420 |
. . . . . . 7
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β ((π β 1) / π) = ((π β 1) / π)) |
33 | 30 | oveq1d 7420 |
. . . . . . 7
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (π / π) = (π / π)) |
34 | 32, 33 | oveq12d 7423 |
. . . . . 6
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (((π β 1) / π)[,](π / π)) = (((π β 1) / π)[,](π / π))) |
35 | | cvmliftlem5.3 |
. . . . . 6
β’ π = (((π β 1) / π)[,](π / π)) |
36 | 34, 35 | eqtr4di 2790 |
. . . . 5
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (((π β 1) / π)[,](π / π)) = π) |
37 | 30 | fveq2d 6892 |
. . . . . . . . . 10
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (πβπ) = (πβπ)) |
38 | 37 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (2nd β(πβπ)) = (2nd β(πβπ))) |
39 | | simpl 483 |
. . . . . . . . . . 11
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β π₯ = (πβ(π β 1))) |
40 | 39, 32 | fveq12d 6895 |
. . . . . . . . . 10
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (π₯β((π β 1) / π)) = ((πβ(π β 1))β((π β 1) / π))) |
41 | 40 | eleq1d 2818 |
. . . . . . . . 9
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β ((π₯β((π β 1) / π)) β π β ((πβ(π β 1))β((π β 1) / π)) β π)) |
42 | 38, 41 | riotaeqbidv 7364 |
. . . . . . . 8
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π) = (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π)) |
43 | 42 | reseq2d 5979 |
. . . . . . 7
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π)) = (πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))) |
44 | 43 | cnveqd 5873 |
. . . . . 6
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π)) = β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))) |
45 | 44 | fveq1d 6890 |
. . . . 5
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)) = (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§))) |
46 | 36, 45 | mpteq12dv 5238 |
. . . 4
β’ ((π₯ = (πβ(π β 1)) β§ π = π) β (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))) = (π§ β π β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§)))) |
47 | | eqid 2732 |
. . . 4
β’ (π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))) = (π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§)))) |
48 | | ovex 7438 |
. . . . . 6
β’ (((π β 1) / π)[,](π / π)) β V |
49 | 35, 48 | eqeltri 2829 |
. . . . 5
β’ π β V |
50 | 49 | mptex 7221 |
. . . 4
β’ (π§ β π β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§))) β V |
51 | 46, 47, 50 | ovmpoa 7559 |
. . 3
β’ (((πβ(π β 1)) β V β§ π β β) β ((πβ(π β 1))(π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))))π) = (π§ β π β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§)))) |
52 | 29, 51 | sylan 580 |
. 2
β’ ((π β§ π β β) β ((πβ(π β 1))(π₯ β V, π β β β¦ (π§ β (((π β 1) / π)[,](π / π)) β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))(π₯β((π β 1) / π)) β π))β(πΊβπ§))))π) = (π§ β π β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§)))) |
53 | 14, 28, 52 | 3eqtrd 2776 |
1
β’ ((π β§ π β β) β (πβπ) = (π§ β π β¦ (β‘(πΉ βΎ (β©π β (2nd β(πβπ))((πβ(π β 1))β((π β 1) / π)) β π))β(πΊβπ§)))) |