Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem5 Structured version   Visualization version   GIF version

Theorem cvmliftlem5 35311
Description: Lemma for cvmlift 35321. Definition of 𝑄 at a successor. This is a function defined on 𝑊 as (𝑇𝐼) ∘ 𝐺 where 𝐼 is the unique covering set of 2nd ‘(𝑇𝑀) that contains 𝑄(𝑀 − 1) evaluated at the last defined point, namely (𝑀 − 1) / 𝑁 (note that for 𝑀 = 1 this is using the seed value 𝑄(0)(0) = 𝑃). (Contributed by Mario Carneiro, 15-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem.q 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
cvmliftlem5.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem5 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
Distinct variable groups:   𝑣,𝑏,𝑧,𝐵   𝑗,𝑏,𝑘,𝑚,𝑠,𝑢,𝑥,𝐹,𝑣,𝑧   𝑧,𝐿   𝑀,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑃,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝐶,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑧   𝜑,𝑗,𝑠,𝑥,𝑧   𝑁,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑆,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑗,𝑋   𝐺,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝑇,𝑏,𝑗,𝑘,𝑚,𝑠,𝑢,𝑣,𝑥,𝑧   𝐽,𝑏,𝑗,𝑘,𝑠,𝑢,𝑣,𝑥,𝑧   𝑄,𝑏,𝑘,𝑚,𝑢,𝑣,𝑥,𝑧   𝑘,𝑊,𝑚,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘,𝑚,𝑏)   𝐵(𝑥,𝑢,𝑗,𝑘,𝑚,𝑠)   𝐶(𝑥,𝑚)   𝑃(𝑗,𝑠)   𝑄(𝑗,𝑠)   𝑆(𝑚)   𝐽(𝑚)   𝐿(𝑥,𝑣,𝑢,𝑗,𝑘,𝑚,𝑠,𝑏)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠,𝑏)   𝑋(𝑥,𝑧,𝑣,𝑢,𝑘,𝑚,𝑠,𝑏)

Proof of Theorem cvmliftlem5
StepHypRef Expression
1 0z 12599 . . . 4 0 ∈ ℤ
2 simpr 484 . . . . 5 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ ℕ)
3 nnuz 12895 . . . . . 6 ℕ = (ℤ‘1)
4 1e0p1 12750 . . . . . . 7 1 = (0 + 1)
54fveq2i 6879 . . . . . 6 (ℤ‘1) = (ℤ‘(0 + 1))
63, 5eqtri 2758 . . . . 5 ℕ = (ℤ‘(0 + 1))
72, 6eleqtrdi 2844 . . . 4 ((𝜑𝑀 ∈ ℕ) → 𝑀 ∈ (ℤ‘(0 + 1)))
8 seqm1 14037 . . . 4 ((0 ∈ ℤ ∧ 𝑀 ∈ (ℤ‘(0 + 1))) → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
91, 7, 8sylancr 587 . . 3 ((𝜑𝑀 ∈ ℕ) → (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
10 cvmliftlem.q . . . 4 𝑄 = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
1110fveq1i 6877 . . 3 (𝑄𝑀) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑀)
1210fveq1i 6877 . . . 4 (𝑄‘(𝑀 − 1)) = (seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))
1312oveq1i 7415 . . 3 ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)) = ((seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀))
149, 11, 133eqtr4g 2795 . 2 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)))
15 0nnn 12276 . . . . . 6 ¬ 0 ∈ ℕ
16 disjsn 4687 . . . . . 6 ((ℕ ∩ {0}) = ∅ ↔ ¬ 0 ∈ ℕ)
1715, 16mpbir 231 . . . . 5 (ℕ ∩ {0}) = ∅
18 fnresi 6667 . . . . . 6 ( I ↾ ℕ) Fn ℕ
19 c0ex 11229 . . . . . . 7 0 ∈ V
20 snex 5406 . . . . . . 7 {⟨0, 𝑃⟩} ∈ V
2119, 20fnsn 6594 . . . . . 6 {⟨0, {⟨0, 𝑃⟩}⟩} Fn {0}
22 fvun1 6970 . . . . . 6 ((( I ↾ ℕ) Fn ℕ ∧ {⟨0, {⟨0, 𝑃⟩}⟩} Fn {0} ∧ ((ℕ ∩ {0}) = ∅ ∧ 𝑀 ∈ ℕ)) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
2318, 21, 22mp3an12 1453 . . . . 5 (((ℕ ∩ {0}) = ∅ ∧ 𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
2417, 2, 23sylancr 587 . . . 4 ((𝜑𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = (( I ↾ ℕ)‘𝑀))
25 fvresi 7165 . . . . 5 (𝑀 ∈ ℕ → (( I ↾ ℕ)‘𝑀) = 𝑀)
2625adantl 481 . . . 4 ((𝜑𝑀 ∈ ℕ) → (( I ↾ ℕ)‘𝑀) = 𝑀)
2724, 26eqtrd 2770 . . 3 ((𝜑𝑀 ∈ ℕ) → ((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀) = 𝑀)
2827oveq2d 7421 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))((( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})‘𝑀)) = ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀))
29 fvexd 6891 . . 3 (𝜑 → (𝑄‘(𝑀 − 1)) ∈ V)
30 simpr 484 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → 𝑚 = 𝑀)
3130oveq1d 7420 . . . . . . . 8 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑚 − 1) = (𝑀 − 1))
3231oveq1d 7420 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝑚 − 1) / 𝑁) = ((𝑀 − 1) / 𝑁))
3330oveq1d 7420 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑚 / 𝑁) = (𝑀 / 𝑁))
3432, 33oveq12d 7423 . . . . . 6 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)))
35 cvmliftlem5.3 . . . . . 6 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
3634, 35eqtr4di 2788 . . . . 5 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) = 𝑊)
3730fveq2d 6880 . . . . . . . . . 10 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑇𝑚) = (𝑇𝑀))
3837fveq2d 6880 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (2nd ‘(𝑇𝑚)) = (2nd ‘(𝑇𝑀)))
39 simpl 482 . . . . . . . . . . 11 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → 𝑥 = (𝑄‘(𝑀 − 1)))
4039, 32fveq12d 6883 . . . . . . . . . 10 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑥‘((𝑚 − 1) / 𝑁)) = ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)))
4140eleq1d 2819 . . . . . . . . 9 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏 ↔ ((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
4238, 41riotaeqbidv 7365 . . . . . . . 8 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))
4342reseq2d 5966 . . . . . . 7 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
4443cnveqd 5855 . . . . . 6 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏)))
4544fveq1d 6878 . . . . 5 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))
4636, 45mpteq12dv 5207 . . . 4 ((𝑥 = (𝑄‘(𝑀 − 1)) ∧ 𝑚 = 𝑀) → (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
47 eqid 2735 . . . 4 (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
48 ovex 7438 . . . . . 6 (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ∈ V
4935, 48eqeltri 2830 . . . . 5 𝑊 ∈ V
5049mptex 7215 . . . 4 (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))) ∈ V
5146, 47, 50ovmpoa 7562 . . 3 (((𝑄‘(𝑀 − 1)) ∈ V ∧ 𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
5229, 51sylan 580 . 2 ((𝜑𝑀 ∈ ℕ) → ((𝑄‘(𝑀 − 1))(𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑁)[,](𝑚 / 𝑁)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑚))(𝑥‘((𝑚 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
5314, 28, 523eqtrd 2774 1 ((𝜑𝑀 ∈ ℕ) → (𝑄𝑀) = (𝑧𝑊 ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑇𝑀))((𝑄‘(𝑀 − 1))‘((𝑀 − 1) / 𝑁)) ∈ 𝑏))‘(𝐺𝑧))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  Vcvv 3459  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  cop 4607   cuni 4883   ciun 4967  cmpt 5201   I cid 5547   × cxp 5652  ccnv 5653  ran crn 5655  cres 5656  cima 5657   Fn wfn 6526  wf 6527  cfv 6531  crio 7361  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  0cc0 11129  1c1 11130   + caddc 11132  cmin 11466   / cdiv 11894  cn 12240  cz 12588  cuz 12852  (,)cioo 13362  [,]cicc 13365  ...cfz 13524  seqcseq 14019  t crest 17434  topGenctg 17451   Cn ccn 23162  Homeochmeo 23691  IIcii 24819   CovMap ccvm 35277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020
This theorem is referenced by:  cvmliftlem6  35312  cvmliftlem8  35314  cvmliftlem9  35315
  Copyright terms: Public domain W3C validator