MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem12 Structured version   Visualization version   GIF version

Theorem axlowdimlem12 28986
Description: Lemma for axlowdim 28994. Calculate the value of 𝑄 away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem12 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄𝐾) = 0)

Proof of Theorem axlowdimlem12
StepHypRef Expression
1 axlowdimlem10.1 . . 3 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
21fveq1i 6921 . 2 (𝑄𝐾) = (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾)
3 eldifsn 4811 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)))
4 disjdif 4495 . . . . 5 ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅
5 ovex 7481 . . . . . . 7 (𝐼 + 1) ∈ V
6 1ex 11286 . . . . . . 7 1 ∈ V
75, 6fnsn 6636 . . . . . 6 {⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)}
8 c0ex 11284 . . . . . . . 8 0 ∈ V
98fconst 6807 . . . . . . 7 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}
10 ffn 6747 . . . . . . 7 ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}))
119, 10ax-mp 5 . . . . . 6 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})
12 fvun2 7014 . . . . . 6 (({⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}))) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
137, 11, 12mp3an12 1451 . . . . 5 ((({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)})) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
144, 13mpan 689 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
158fvconst2 7241 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾) = 0)
1614, 15eqtrd 2780 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = 0)
173, 16sylbir 235 . 2 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = 0)
182, 17eqtrid 2792 1 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  cun 3974  cin 3975  c0 4352  {csn 4648  cop 4654   × cxp 5698   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-mulcl 11246  ax-i2m1 11252
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451
This theorem is referenced by:  axlowdimlem14  28988  axlowdimlem16  28990  axlowdimlem17  28991
  Copyright terms: Public domain W3C validator