MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem12 Structured version   Visualization version   GIF version

Theorem axlowdimlem12 27321
Description: Lemma for axlowdim 27329. Calculate the value of 𝑄 away from its distinguished point. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem10.1 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem12 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄𝐾) = 0)

Proof of Theorem axlowdimlem12
StepHypRef Expression
1 axlowdimlem10.1 . . 3 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
21fveq1i 6775 . 2 (𝑄𝐾) = (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾)
3 eldifsn 4720 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)))
4 disjdif 4405 . . . . 5 ({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅
5 ovex 7308 . . . . . . 7 (𝐼 + 1) ∈ V
6 1ex 10971 . . . . . . 7 1 ∈ V
75, 6fnsn 6492 . . . . . 6 {⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)}
8 c0ex 10969 . . . . . . . 8 0 ∈ V
98fconst 6660 . . . . . . 7 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0}
10 ffn 6600 . . . . . . 7 ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0}):((1...𝑁) ∖ {(𝐼 + 1)})⟶{0} → (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}))
119, 10ax-mp 5 . . . . . 6 (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)})
12 fvun2 6860 . . . . . 6 (({⟨(𝐼 + 1), 1⟩} Fn {(𝐼 + 1)} ∧ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}) Fn ((1...𝑁) ∖ {(𝐼 + 1)}) ∧ (({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}))) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
137, 11, 12mp3an12 1450 . . . . 5 ((({(𝐼 + 1)} ∩ ((1...𝑁) ∖ {(𝐼 + 1)})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)})) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
144, 13mpan 687 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾))
158fvconst2 7079 . . . 4 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → ((((1...𝑁) ∖ {(𝐼 + 1)}) × {0})‘𝐾) = 0)
1614, 15eqtrd 2778 . . 3 (𝐾 ∈ ((1...𝑁) ∖ {(𝐼 + 1)}) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = 0)
173, 16sylbir 234 . 2 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))‘𝐾) = 0)
182, 17eqtrid 2790 1 ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ (𝐼 + 1)) → (𝑄𝐾) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  cun 3885  cin 3886  c0 4256  {csn 4561  cop 4567   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-mulcl 10933  ax-i2m1 10939
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278
This theorem is referenced by:  axlowdimlem14  27323  axlowdimlem16  27325  axlowdimlem17  27326
  Copyright terms: Public domain W3C validator