| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connima | Structured version Visualization version GIF version | ||
| Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| connima.x | ⊢ 𝑋 = ∪ 𝐽 |
| connima.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| connima.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| connima.c | ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) |
| Ref | Expression |
|---|---|
| connima | ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connima.c | . 2 ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) | |
| 2 | connima.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 3 | connima.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | eqid 2735 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3, 4 | cnf 23184 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
| 7 | 6 | ffund 6710 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
| 8 | connima.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 9 | 6 | fdmd 6716 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝑋) |
| 10 | 8, 9 | sseqtrrd 3996 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 11 | fores 6800 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) | |
| 12 | 7, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
| 13 | cntop2 23179 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 15 | imassrn 6058 | . . . . . 6 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 16 | 6 | frnd 6714 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐾) |
| 17 | 15, 16 | sstrid 3970 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ ∪ 𝐾) |
| 18 | 4 | restuni 23100 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ (𝐹 “ 𝐴) ⊆ ∪ 𝐾) → (𝐹 “ 𝐴) = ∪ (𝐾 ↾t (𝐹 “ 𝐴))) |
| 19 | 14, 17, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐴) = ∪ (𝐾 ↾t (𝐹 “ 𝐴))) |
| 20 | foeq3 6788 | . . . 4 ⊢ ((𝐹 “ 𝐴) = ∪ (𝐾 ↾t (𝐹 “ 𝐴)) → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴)))) | |
| 21 | 19, 20 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴)))) |
| 22 | 12, 21 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴))) |
| 23 | 3 | cnrest 23223 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 24 | 2, 8, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 25 | toptopon2 22856 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 26 | 14, 25 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 27 | df-ima 5667 | . . . . 5 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 28 | eqimss2 4018 | . . . . 5 ⊢ ((𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) → ran (𝐹 ↾ 𝐴) ⊆ (𝐹 “ 𝐴)) | |
| 29 | 27, 28 | mp1i 13 | . . . 4 ⊢ (𝜑 → ran (𝐹 ↾ 𝐴) ⊆ (𝐹 “ 𝐴)) |
| 30 | cnrest2 23224 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran (𝐹 ↾ 𝐴) ⊆ (𝐹 “ 𝐴) ∧ (𝐹 “ 𝐴) ⊆ ∪ 𝐾) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴))))) | |
| 31 | 26, 29, 17, 30 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴))))) |
| 32 | 24, 31 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴)))) |
| 33 | eqid 2735 | . . 3 ⊢ ∪ (𝐾 ↾t (𝐹 “ 𝐴)) = ∪ (𝐾 ↾t (𝐹 “ 𝐴)) | |
| 34 | 33 | cnconn 23360 | . 2 ⊢ (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴)) ∧ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴)))) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) |
| 35 | 1, 22, 32, 34 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ∪ cuni 4883 dom cdm 5654 ran crn 5655 ↾ cres 5656 “ cima 5657 Fun wfun 6525 ⟶wf 6527 –onto→wfo 6529 ‘cfv 6531 (class class class)co 7405 ↾t crest 17434 Topctop 22831 TopOnctopon 22848 Cn ccn 23162 Conncconn 23349 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-map 8842 df-en 8960 df-fin 8963 df-fi 9423 df-rest 17436 df-topgen 17457 df-top 22832 df-topon 22849 df-bases 22884 df-cld 22957 df-cn 23165 df-conn 23350 |
| This theorem is referenced by: tgpconncompeqg 24050 tgpconncomp 24051 |
| Copyright terms: Public domain | W3C validator |