| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connima | Structured version Visualization version GIF version | ||
| Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| connima.x | ⊢ 𝑋 = ∪ 𝐽 |
| connima.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| connima.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| connima.c | ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) |
| Ref | Expression |
|---|---|
| connima | ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connima.c | . 2 ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) | |
| 2 | connima.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 3 | connima.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | eqid 2737 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3, 4 | cnf 23254 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
| 7 | 6 | ffund 6740 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
| 8 | connima.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 9 | 6 | fdmd 6746 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝑋) |
| 10 | 8, 9 | sseqtrrd 4021 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 11 | fores 6830 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) | |
| 12 | 7, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
| 13 | cntop2 23249 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 15 | imassrn 6089 | . . . . . 6 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 16 | 6 | frnd 6744 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐾) |
| 17 | 15, 16 | sstrid 3995 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ ∪ 𝐾) |
| 18 | 4 | restuni 23170 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ (𝐹 “ 𝐴) ⊆ ∪ 𝐾) → (𝐹 “ 𝐴) = ∪ (𝐾 ↾t (𝐹 “ 𝐴))) |
| 19 | 14, 17, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐴) = ∪ (𝐾 ↾t (𝐹 “ 𝐴))) |
| 20 | foeq3 6818 | . . . 4 ⊢ ((𝐹 “ 𝐴) = ∪ (𝐾 ↾t (𝐹 “ 𝐴)) → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴)))) | |
| 21 | 19, 20 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴)))) |
| 22 | 12, 21 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴))) |
| 23 | 3 | cnrest 23293 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 24 | 2, 8, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 25 | toptopon2 22924 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 26 | 14, 25 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 27 | df-ima 5698 | . . . . 5 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 28 | eqimss2 4043 | . . . . 5 ⊢ ((𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) → ran (𝐹 ↾ 𝐴) ⊆ (𝐹 “ 𝐴)) | |
| 29 | 27, 28 | mp1i 13 | . . . 4 ⊢ (𝜑 → ran (𝐹 ↾ 𝐴) ⊆ (𝐹 “ 𝐴)) |
| 30 | cnrest2 23294 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran (𝐹 ↾ 𝐴) ⊆ (𝐹 “ 𝐴) ∧ (𝐹 “ 𝐴) ⊆ ∪ 𝐾) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴))))) | |
| 31 | 26, 29, 17, 30 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴))))) |
| 32 | 24, 31 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴)))) |
| 33 | eqid 2737 | . . 3 ⊢ ∪ (𝐾 ↾t (𝐹 “ 𝐴)) = ∪ (𝐾 ↾t (𝐹 “ 𝐴)) | |
| 34 | 33 | cnconn 23430 | . 2 ⊢ (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴)) ∧ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴)))) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) |
| 35 | 1, 22, 32, 34 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ∪ cuni 4907 dom cdm 5685 ran crn 5686 ↾ cres 5687 “ cima 5688 Fun wfun 6555 ⟶wf 6557 –onto→wfo 6559 ‘cfv 6561 (class class class)co 7431 ↾t crest 17465 Topctop 22899 TopOnctopon 22916 Cn ccn 23232 Conncconn 23419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-map 8868 df-en 8986 df-fin 8989 df-fi 9451 df-rest 17467 df-topgen 17488 df-top 22900 df-topon 22917 df-bases 22953 df-cld 23027 df-cn 23235 df-conn 23420 |
| This theorem is referenced by: tgpconncompeqg 24120 tgpconncomp 24121 |
| Copyright terms: Public domain | W3C validator |