MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connima Structured version   Visualization version   GIF version

Theorem connima 23433
Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
connima.x 𝑋 = 𝐽
connima.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
connima.a (𝜑𝐴𝑋)
connima.c (𝜑 → (𝐽t 𝐴) ∈ Conn)
Assertion
Ref Expression
connima (𝜑 → (𝐾t (𝐹𝐴)) ∈ Conn)

Proof of Theorem connima
StepHypRef Expression
1 connima.c . 2 (𝜑 → (𝐽t 𝐴) ∈ Conn)
2 connima.f . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 connima.x . . . . . . 7 𝑋 = 𝐽
4 eqid 2737 . . . . . . 7 𝐾 = 𝐾
53, 4cnf 23254 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
62, 5syl 17 . . . . 5 (𝜑𝐹:𝑋 𝐾)
76ffund 6740 . . . 4 (𝜑 → Fun 𝐹)
8 connima.a . . . . 5 (𝜑𝐴𝑋)
96fdmd 6746 . . . . 5 (𝜑 → dom 𝐹 = 𝑋)
108, 9sseqtrrd 4021 . . . 4 (𝜑𝐴 ⊆ dom 𝐹)
11 fores 6830 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
127, 10, 11syl2anc 584 . . 3 (𝜑 → (𝐹𝐴):𝐴onto→(𝐹𝐴))
13 cntop2 23249 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
142, 13syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
15 imassrn 6089 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
166frnd 6744 . . . . . 6 (𝜑 → ran 𝐹 𝐾)
1715, 16sstrid 3995 . . . . 5 (𝜑 → (𝐹𝐴) ⊆ 𝐾)
184restuni 23170 . . . . 5 ((𝐾 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐾) → (𝐹𝐴) = (𝐾t (𝐹𝐴)))
1914, 17, 18syl2anc 584 . . . 4 (𝜑 → (𝐹𝐴) = (𝐾t (𝐹𝐴)))
20 foeq3 6818 . . . 4 ((𝐹𝐴) = (𝐾t (𝐹𝐴)) → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴))))
2119, 20syl 17 . . 3 (𝜑 → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴))))
2212, 21mpbid 232 . 2 (𝜑 → (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴)))
233cnrest 23293 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
242, 8, 23syl2anc 584 . . 3 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
25 toptopon2 22924 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2614, 25sylib 218 . . . 4 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
27 df-ima 5698 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
28 eqimss2 4043 . . . . 5 ((𝐹𝐴) = ran (𝐹𝐴) → ran (𝐹𝐴) ⊆ (𝐹𝐴))
2927, 28mp1i 13 . . . 4 (𝜑 → ran (𝐹𝐴) ⊆ (𝐹𝐴))
30 cnrest2 23294 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran (𝐹𝐴) ⊆ (𝐹𝐴) ∧ (𝐹𝐴) ⊆ 𝐾) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴)))))
3126, 29, 17, 30syl3anc 1373 . . 3 (𝜑 → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴)))))
3224, 31mpbid 232 . 2 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴))))
33 eqid 2737 . . 3 (𝐾t (𝐹𝐴)) = (𝐾t (𝐹𝐴))
3433cnconn 23430 . 2 (((𝐽t 𝐴) ∈ Conn ∧ (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴)) ∧ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴)))) → (𝐾t (𝐹𝐴)) ∈ Conn)
351, 22, 32, 34syl3anc 1373 1 (𝜑 → (𝐾t (𝐹𝐴)) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wss 3951   cuni 4907  dom cdm 5685  ran crn 5686  cres 5687  cima 5688  Fun wfun 6555  wf 6557  ontowfo 6559  cfv 6561  (class class class)co 7431  t crest 17465  Topctop 22899  TopOnctopon 22916   Cn ccn 23232  Conncconn 23419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-map 8868  df-en 8986  df-fin 8989  df-fi 9451  df-rest 17467  df-topgen 17488  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-cn 23235  df-conn 23420
This theorem is referenced by:  tgpconncompeqg  24120  tgpconncomp  24121
  Copyright terms: Public domain W3C validator