MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connima Structured version   Visualization version   GIF version

Theorem connima 23338
Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
connima.x 𝑋 = 𝐽
connima.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
connima.a (𝜑𝐴𝑋)
connima.c (𝜑 → (𝐽t 𝐴) ∈ Conn)
Assertion
Ref Expression
connima (𝜑 → (𝐾t (𝐹𝐴)) ∈ Conn)

Proof of Theorem connima
StepHypRef Expression
1 connima.c . 2 (𝜑 → (𝐽t 𝐴) ∈ Conn)
2 connima.f . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 connima.x . . . . . . 7 𝑋 = 𝐽
4 eqid 2731 . . . . . . 7 𝐾 = 𝐾
53, 4cnf 23159 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
62, 5syl 17 . . . . 5 (𝜑𝐹:𝑋 𝐾)
76ffund 6655 . . . 4 (𝜑 → Fun 𝐹)
8 connima.a . . . . 5 (𝜑𝐴𝑋)
96fdmd 6661 . . . . 5 (𝜑 → dom 𝐹 = 𝑋)
108, 9sseqtrrd 3972 . . . 4 (𝜑𝐴 ⊆ dom 𝐹)
11 fores 6745 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
127, 10, 11syl2anc 584 . . 3 (𝜑 → (𝐹𝐴):𝐴onto→(𝐹𝐴))
13 cntop2 23154 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
142, 13syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
15 imassrn 6020 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
166frnd 6659 . . . . . 6 (𝜑 → ran 𝐹 𝐾)
1715, 16sstrid 3946 . . . . 5 (𝜑 → (𝐹𝐴) ⊆ 𝐾)
184restuni 23075 . . . . 5 ((𝐾 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐾) → (𝐹𝐴) = (𝐾t (𝐹𝐴)))
1914, 17, 18syl2anc 584 . . . 4 (𝜑 → (𝐹𝐴) = (𝐾t (𝐹𝐴)))
20 foeq3 6733 . . . 4 ((𝐹𝐴) = (𝐾t (𝐹𝐴)) → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴))))
2119, 20syl 17 . . 3 (𝜑 → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴))))
2212, 21mpbid 232 . 2 (𝜑 → (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴)))
233cnrest 23198 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
242, 8, 23syl2anc 584 . . 3 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
25 toptopon2 22831 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2614, 25sylib 218 . . . 4 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
27 df-ima 5629 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
28 eqimss2 3994 . . . . 5 ((𝐹𝐴) = ran (𝐹𝐴) → ran (𝐹𝐴) ⊆ (𝐹𝐴))
2927, 28mp1i 13 . . . 4 (𝜑 → ran (𝐹𝐴) ⊆ (𝐹𝐴))
30 cnrest2 23199 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran (𝐹𝐴) ⊆ (𝐹𝐴) ∧ (𝐹𝐴) ⊆ 𝐾) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴)))))
3126, 29, 17, 30syl3anc 1373 . . 3 (𝜑 → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴)))))
3224, 31mpbid 232 . 2 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴))))
33 eqid 2731 . . 3 (𝐾t (𝐹𝐴)) = (𝐾t (𝐹𝐴))
3433cnconn 23335 . 2 (((𝐽t 𝐴) ∈ Conn ∧ (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴)) ∧ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴)))) → (𝐾t (𝐹𝐴)) ∈ Conn)
351, 22, 32, 34syl3anc 1373 1 (𝜑 → (𝐾t (𝐹𝐴)) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wss 3902   cuni 4859  dom cdm 5616  ran crn 5617  cres 5618  cima 5619  Fun wfun 6475  wf 6477  ontowfo 6479  cfv 6481  (class class class)co 7346  t crest 17321  Topctop 22806  TopOnctopon 22823   Cn ccn 23137  Conncconn 23324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-map 8752  df-en 8870  df-fin 8873  df-fi 9295  df-rest 17323  df-topgen 17344  df-top 22807  df-topon 22824  df-bases 22859  df-cld 22932  df-cn 23140  df-conn 23325
This theorem is referenced by:  tgpconncompeqg  24025  tgpconncomp  24026
  Copyright terms: Public domain W3C validator