| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > connima | Structured version Visualization version GIF version | ||
| Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| connima.x | ⊢ 𝑋 = ∪ 𝐽 |
| connima.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| connima.a | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| connima.c | ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) |
| Ref | Expression |
|---|---|
| connima | ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | connima.c | . 2 ⊢ (𝜑 → (𝐽 ↾t 𝐴) ∈ Conn) | |
| 2 | connima.f | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 3 | connima.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 4 | eqid 2731 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 5 | 3, 4 | cnf 23159 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 6 | 2, 5 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
| 7 | 6 | ffund 6655 | . . . 4 ⊢ (𝜑 → Fun 𝐹) |
| 8 | connima.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 9 | 6 | fdmd 6661 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝑋) |
| 10 | 8, 9 | sseqtrrd 3972 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ dom 𝐹) |
| 11 | fores 6745 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) | |
| 12 | 7, 10, 11 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
| 13 | cntop2 23154 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 14 | 2, 13 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 15 | imassrn 6020 | . . . . . 6 ⊢ (𝐹 “ 𝐴) ⊆ ran 𝐹 | |
| 16 | 6 | frnd 6659 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐾) |
| 17 | 15, 16 | sstrid 3946 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ ∪ 𝐾) |
| 18 | 4 | restuni 23075 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ (𝐹 “ 𝐴) ⊆ ∪ 𝐾) → (𝐹 “ 𝐴) = ∪ (𝐾 ↾t (𝐹 “ 𝐴))) |
| 19 | 14, 17, 18 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐴) = ∪ (𝐾 ↾t (𝐹 “ 𝐴))) |
| 20 | foeq3 6733 | . . . 4 ⊢ ((𝐹 “ 𝐴) = ∪ (𝐾 ↾t (𝐹 “ 𝐴)) → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴)))) | |
| 21 | 19, 20 | syl 17 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴)))) |
| 22 | 12, 21 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴))) |
| 23 | 3 | cnrest 23198 | . . . 4 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 24 | 2, 8, 23 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| 25 | toptopon2 22831 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 26 | 14, 25 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 27 | df-ima 5629 | . . . . 5 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 28 | eqimss2 3994 | . . . . 5 ⊢ ((𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) → ran (𝐹 ↾ 𝐴) ⊆ (𝐹 “ 𝐴)) | |
| 29 | 27, 28 | mp1i 13 | . . . 4 ⊢ (𝜑 → ran (𝐹 ↾ 𝐴) ⊆ (𝐹 “ 𝐴)) |
| 30 | cnrest2 23199 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran (𝐹 ↾ 𝐴) ⊆ (𝐹 “ 𝐴) ∧ (𝐹 “ 𝐴) ⊆ ∪ 𝐾) → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴))))) | |
| 31 | 26, 29, 17, 30 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾) ↔ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴))))) |
| 32 | 24, 31 | mpbid 232 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴)))) |
| 33 | eqid 2731 | . . 3 ⊢ ∪ (𝐾 ↾t (𝐹 “ 𝐴)) = ∪ (𝐾 ↾t (𝐹 “ 𝐴)) | |
| 34 | 33 | cnconn 23335 | . 2 ⊢ (((𝐽 ↾t 𝐴) ∈ Conn ∧ (𝐹 ↾ 𝐴):𝐴–onto→∪ (𝐾 ↾t (𝐹 “ 𝐴)) ∧ (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn (𝐾 ↾t (𝐹 “ 𝐴)))) → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) |
| 35 | 1, 22, 32, 34 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝐾 ↾t (𝐹 “ 𝐴)) ∈ Conn) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ∪ cuni 4859 dom cdm 5616 ran crn 5617 ↾ cres 5618 “ cima 5619 Fun wfun 6475 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 ↾t crest 17321 Topctop 22806 TopOnctopon 22823 Cn ccn 23137 Conncconn 23324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-map 8752 df-en 8870 df-fin 8873 df-fi 9295 df-rest 17323 df-topgen 17344 df-top 22807 df-topon 22824 df-bases 22859 df-cld 22932 df-cn 23140 df-conn 23325 |
| This theorem is referenced by: tgpconncompeqg 24025 tgpconncomp 24026 |
| Copyright terms: Public domain | W3C validator |