MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  connima Structured version   Visualization version   GIF version

Theorem connima 23341
Description: The image of a connected set is connected. (Contributed by Mario Carneiro, 7-Jul-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
connima.x 𝑋 = 𝐽
connima.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
connima.a (𝜑𝐴𝑋)
connima.c (𝜑 → (𝐽t 𝐴) ∈ Conn)
Assertion
Ref Expression
connima (𝜑 → (𝐾t (𝐹𝐴)) ∈ Conn)

Proof of Theorem connima
StepHypRef Expression
1 connima.c . 2 (𝜑 → (𝐽t 𝐴) ∈ Conn)
2 connima.f . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 connima.x . . . . . . 7 𝑋 = 𝐽
4 eqid 2733 . . . . . . 7 𝐾 = 𝐾
53, 4cnf 23162 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
62, 5syl 17 . . . . 5 (𝜑𝐹:𝑋 𝐾)
76ffund 6660 . . . 4 (𝜑 → Fun 𝐹)
8 connima.a . . . . 5 (𝜑𝐴𝑋)
96fdmd 6666 . . . . 5 (𝜑 → dom 𝐹 = 𝑋)
108, 9sseqtrrd 3968 . . . 4 (𝜑𝐴 ⊆ dom 𝐹)
11 fores 6750 . . . 4 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
127, 10, 11syl2anc 584 . . 3 (𝜑 → (𝐹𝐴):𝐴onto→(𝐹𝐴))
13 cntop2 23157 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
142, 13syl 17 . . . . 5 (𝜑𝐾 ∈ Top)
15 imassrn 6024 . . . . . 6 (𝐹𝐴) ⊆ ran 𝐹
166frnd 6664 . . . . . 6 (𝜑 → ran 𝐹 𝐾)
1715, 16sstrid 3942 . . . . 5 (𝜑 → (𝐹𝐴) ⊆ 𝐾)
184restuni 23078 . . . . 5 ((𝐾 ∈ Top ∧ (𝐹𝐴) ⊆ 𝐾) → (𝐹𝐴) = (𝐾t (𝐹𝐴)))
1914, 17, 18syl2anc 584 . . . 4 (𝜑 → (𝐹𝐴) = (𝐾t (𝐹𝐴)))
20 foeq3 6738 . . . 4 ((𝐹𝐴) = (𝐾t (𝐹𝐴)) → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴))))
2119, 20syl 17 . . 3 (𝜑 → ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴))))
2212, 21mpbid 232 . 2 (𝜑 → (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴)))
233cnrest 23201 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴𝑋) → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
242, 8, 23syl2anc 584 . . 3 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
25 toptopon2 22834 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
2614, 25sylib 218 . . . 4 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
27 df-ima 5632 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
28 eqimss2 3990 . . . . 5 ((𝐹𝐴) = ran (𝐹𝐴) → ran (𝐹𝐴) ⊆ (𝐹𝐴))
2927, 28mp1i 13 . . . 4 (𝜑 → ran (𝐹𝐴) ⊆ (𝐹𝐴))
30 cnrest2 23202 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran (𝐹𝐴) ⊆ (𝐹𝐴) ∧ (𝐹𝐴) ⊆ 𝐾) → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴)))))
3126, 29, 17, 30syl3anc 1373 . . 3 (𝜑 → ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ↔ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴)))))
3224, 31mpbid 232 . 2 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴))))
33 eqid 2733 . . 3 (𝐾t (𝐹𝐴)) = (𝐾t (𝐹𝐴))
3433cnconn 23338 . 2 (((𝐽t 𝐴) ∈ Conn ∧ (𝐹𝐴):𝐴onto (𝐾t (𝐹𝐴)) ∧ (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn (𝐾t (𝐹𝐴)))) → (𝐾t (𝐹𝐴)) ∈ Conn)
351, 22, 32, 34syl3anc 1373 1 (𝜑 → (𝐾t (𝐹𝐴)) ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  wss 3898   cuni 4858  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6480  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7352  t crest 17326  Topctop 22809  TopOnctopon 22826   Cn ccn 23140  Conncconn 23327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-map 8758  df-en 8876  df-fin 8879  df-fi 9302  df-rest 17328  df-topgen 17349  df-top 22810  df-topon 22827  df-bases 22862  df-cld 22935  df-cn 23143  df-conn 23328
This theorem is referenced by:  tgpconncompeqg  24028  tgpconncomp  24029
  Copyright terms: Public domain W3C validator