|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rncmp | Structured version Visualization version GIF version | ||
| Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| rncmp | ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp) | |
| 2 | eqid 2737 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | eqid 2737 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23254 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) | 
| 5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) | 
| 6 | 5 | ffnd 6737 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn ∪ 𝐽) | 
| 7 | dffn4 6826 | . . . 4 ⊢ (𝐹 Fn ∪ 𝐽 ↔ 𝐹:∪ 𝐽–onto→ran 𝐹) | |
| 8 | 6, 7 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽–onto→ran 𝐹) | 
| 9 | cntop2 23249 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top) | 
| 11 | 5 | frnd 6744 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ∪ 𝐾) | 
| 12 | 3 | restuni 23170 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) | 
| 13 | 10, 11, 12 | syl2anc 584 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) | 
| 14 | foeq3 6818 | . . . 4 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:∪ 𝐽–onto→ran 𝐹 ↔ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹))) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:∪ 𝐽–onto→ran 𝐹 ↔ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹))) | 
| 16 | 8, 15 | mpbid 232 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹)) | 
| 17 | simpr 484 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 18 | toptopon2 22924 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 19 | 10, 18 | sylib 218 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) | 
| 20 | ssidd 4007 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ran 𝐹) | |
| 21 | cnrest2 23294 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
| 22 | 19, 20, 11, 21 | syl3anc 1373 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | 
| 23 | 17, 22 | mpbid 232 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) | 
| 24 | eqid 2737 | . . 3 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
| 25 | 24 | cncmp 23400 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Comp) | 
| 26 | 1, 16, 23, 25 | syl3anc 1373 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 ∪ cuni 4907 ran crn 5686 Fn wfn 6556 ⟶wf 6557 –onto→wfo 6559 ‘cfv 6561 (class class class)co 7431 ↾t crest 17465 Topctop 22899 TopOnctopon 22916 Cn ccn 23232 Compccmp 23394 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-1o 8506 df-map 8868 df-en 8986 df-dom 8987 df-fin 8989 df-fi 9451 df-rest 17467 df-topgen 17488 df-top 22900 df-topon 22917 df-bases 22953 df-cn 23235 df-cmp 23395 | 
| This theorem is referenced by: imacmp 23405 kgencn2 23565 bndth 24990 | 
| Copyright terms: Public domain | W3C validator |