MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncmp Structured version   Visualization version   GIF version

Theorem rncmp 23283
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
rncmp ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾t ran 𝐹) ∈ Comp)

Proof of Theorem rncmp
StepHypRef Expression
1 simpl 482 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp)
2 eqid 2729 . . . . . . 7 𝐽 = 𝐽
3 eqid 2729 . . . . . . 7 𝐾 = 𝐾
42, 3cnf 23133 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
54adantl 481 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
65ffnd 6689 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn 𝐽)
7 dffn4 6778 . . . 4 (𝐹 Fn 𝐽𝐹: 𝐽onto→ran 𝐹)
86, 7sylib 218 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽onto→ran 𝐹)
9 cntop2 23128 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
109adantl 481 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
115frnd 6696 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 𝐾)
123restuni 23049 . . . . 5 ((𝐾 ∈ Top ∧ ran 𝐹 𝐾) → ran 𝐹 = (𝐾t ran 𝐹))
1310, 11, 12syl2anc 584 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = (𝐾t ran 𝐹))
14 foeq3 6770 . . . 4 (ran 𝐹 = (𝐾t ran 𝐹) → (𝐹: 𝐽onto→ran 𝐹𝐹: 𝐽onto (𝐾t ran 𝐹)))
1513, 14syl 17 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹: 𝐽onto→ran 𝐹𝐹: 𝐽onto (𝐾t ran 𝐹)))
168, 15mpbid 232 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽onto (𝐾t ran 𝐹))
17 simpr 484 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
18 toptopon2 22805 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1910, 18sylib 218 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐾))
20 ssidd 3970 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ran 𝐹)
21 cnrest2 23173 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
2219, 20, 11, 21syl3anc 1373 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
2317, 22mpbid 232 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
24 eqid 2729 . . 3 (𝐾t ran 𝐹) = (𝐾t ran 𝐹)
2524cncmp 23279 . 2 ((𝐽 ∈ Comp ∧ 𝐹: 𝐽onto (𝐾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))) → (𝐾t ran 𝐹) ∈ Comp)
261, 16, 23, 25syl3anc 1373 1 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾t ran 𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3914   cuni 4871  ran crn 5639   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  t crest 17383  Topctop 22780  TopOnctopon 22797   Cn ccn 23111  Compccmp 23273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-map 8801  df-en 8919  df-dom 8920  df-fin 8922  df-fi 9362  df-rest 17385  df-topgen 17406  df-top 22781  df-topon 22798  df-bases 22833  df-cn 23114  df-cmp 23274
This theorem is referenced by:  imacmp  23284  kgencn2  23444  bndth  24857
  Copyright terms: Public domain W3C validator