![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncmp | Structured version Visualization version GIF version |
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
rncmp | ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp) | |
2 | eqid 2740 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | eqid 2740 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
4 | 2, 3 | cnf 23275 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
6 | 5 | ffnd 6748 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn ∪ 𝐽) |
7 | dffn4 6840 | . . . 4 ⊢ (𝐹 Fn ∪ 𝐽 ↔ 𝐹:∪ 𝐽–onto→ran 𝐹) | |
8 | 6, 7 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽–onto→ran 𝐹) |
9 | cntop2 23270 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top) |
11 | 5 | frnd 6755 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ∪ 𝐾) |
12 | 3 | restuni 23191 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
13 | 10, 11, 12 | syl2anc 583 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
14 | foeq3 6832 | . . . 4 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:∪ 𝐽–onto→ran 𝐹 ↔ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:∪ 𝐽–onto→ran 𝐹 ↔ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹))) |
16 | 8, 15 | mpbid 232 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹)) |
17 | simpr 484 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
18 | toptopon2 22945 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
19 | 10, 18 | sylib 218 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
20 | ssidd 4032 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ran 𝐹) | |
21 | cnrest2 23315 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
22 | 19, 20, 11, 21 | syl3anc 1371 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) |
23 | 17, 22 | mpbid 232 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) |
24 | eqid 2740 | . . 3 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
25 | 24 | cncmp 23421 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Comp) |
26 | 1, 16, 23, 25 | syl3anc 1371 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 ran crn 5701 Fn wfn 6568 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 ↾t crest 17480 Topctop 22920 TopOnctopon 22937 Cn ccn 23253 Compccmp 23415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-map 8886 df-en 9004 df-dom 9005 df-fin 9007 df-fi 9480 df-rest 17482 df-topgen 17503 df-top 22921 df-topon 22938 df-bases 22974 df-cn 23256 df-cmp 23416 |
This theorem is referenced by: imacmp 23426 kgencn2 23586 bndth 25009 |
Copyright terms: Public domain | W3C validator |