![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncmp | Structured version Visualization version GIF version |
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
rncmp | ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp) | |
2 | eqid 2735 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | eqid 2735 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
4 | 2, 3 | cnf 23270 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
5 | 4 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
6 | 5 | ffnd 6738 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn ∪ 𝐽) |
7 | dffn4 6827 | . . . 4 ⊢ (𝐹 Fn ∪ 𝐽 ↔ 𝐹:∪ 𝐽–onto→ran 𝐹) | |
8 | 6, 7 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽–onto→ran 𝐹) |
9 | cntop2 23265 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top) |
11 | 5 | frnd 6745 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ∪ 𝐾) |
12 | 3 | restuni 23186 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
13 | 10, 11, 12 | syl2anc 584 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
14 | foeq3 6819 | . . . 4 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:∪ 𝐽–onto→ran 𝐹 ↔ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:∪ 𝐽–onto→ran 𝐹 ↔ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹))) |
16 | 8, 15 | mpbid 232 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹)) |
17 | simpr 484 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
18 | toptopon2 22940 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
19 | 10, 18 | sylib 218 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
20 | ssidd 4019 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ran 𝐹) | |
21 | cnrest2 23310 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
22 | 19, 20, 11, 21 | syl3anc 1370 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) |
23 | 17, 22 | mpbid 232 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) |
24 | eqid 2735 | . . 3 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
25 | 24 | cncmp 23416 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Comp) |
26 | 1, 16, 23, 25 | syl3anc 1370 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ∪ cuni 4912 ran crn 5690 Fn wfn 6558 ⟶wf 6559 –onto→wfo 6561 ‘cfv 6563 (class class class)co 7431 ↾t crest 17467 Topctop 22915 TopOnctopon 22932 Cn ccn 23248 Compccmp 23410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-1o 8505 df-map 8867 df-en 8985 df-dom 8986 df-fin 8988 df-fi 9449 df-rest 17469 df-topgen 17490 df-top 22916 df-topon 22933 df-bases 22969 df-cn 23251 df-cmp 23411 |
This theorem is referenced by: imacmp 23421 kgencn2 23581 bndth 25004 |
Copyright terms: Public domain | W3C validator |