![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rncmp | Structured version Visualization version GIF version |
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
rncmp | ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 476 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp) | |
2 | eqid 2778 | . . . . . . 7 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | eqid 2778 | . . . . . . 7 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
4 | 2, 3 | cnf 21469 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
5 | 4 | adantl 475 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽⟶∪ 𝐾) |
6 | 5 | ffnd 6294 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn ∪ 𝐽) |
7 | dffn4 6374 | . . . 4 ⊢ (𝐹 Fn ∪ 𝐽 ↔ 𝐹:∪ 𝐽–onto→ran 𝐹) | |
8 | 6, 7 | sylib 210 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽–onto→ran 𝐹) |
9 | cntop2 21464 | . . . . . 6 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
10 | 9 | adantl 475 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top) |
11 | 5 | frnd 6300 | . . . . 5 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ∪ 𝐾) |
12 | 3 | restuni 21385 | . . . . 5 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
13 | 10, 11, 12 | syl2anc 579 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
14 | foeq3 6366 | . . . 4 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:∪ 𝐽–onto→ran 𝐹 ↔ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹:∪ 𝐽–onto→ran 𝐹 ↔ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹))) |
16 | 8, 15 | mpbid 224 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹)) |
17 | simpr 479 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
18 | toptopon2 21141 | . . . . 5 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
19 | 10, 18 | sylib 210 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
20 | ssidd 3843 | . . . 4 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ran 𝐹) | |
21 | cnrest2 21509 | . . . 4 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
22 | 19, 20, 11, 21 | syl3anc 1439 | . . 3 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) |
23 | 17, 22 | mpbid 224 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) |
24 | eqid 2778 | . . 3 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
25 | 24 | cncmp 21615 | . 2 ⊢ ((𝐽 ∈ Comp ∧ 𝐹:∪ 𝐽–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Comp) |
26 | 1, 16, 23, 25 | syl3anc 1439 | 1 ⊢ ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾 ↾t ran 𝐹) ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ∪ cuni 4673 ran crn 5358 Fn wfn 6132 ⟶wf 6133 –onto→wfo 6135 ‘cfv 6137 (class class class)co 6924 ↾t crest 16478 Topctop 21116 TopOnctopon 21133 Cn ccn 21447 Compccmp 21609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-fin 8247 df-fi 8607 df-rest 16480 df-topgen 16501 df-top 21117 df-topon 21134 df-bases 21169 df-cn 21450 df-cmp 21610 |
This theorem is referenced by: imacmp 21620 kgencn2 21780 bndth 23176 |
Copyright terms: Public domain | W3C validator |