MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncmp Structured version   Visualization version   GIF version

Theorem rncmp 23339
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
rncmp ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾t ran 𝐹) ∈ Comp)

Proof of Theorem rncmp
StepHypRef Expression
1 simpl 482 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐽 ∈ Comp)
2 eqid 2736 . . . . . . 7 𝐽 = 𝐽
3 eqid 2736 . . . . . . 7 𝐾 = 𝐾
42, 3cnf 23189 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
54adantl 481 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽 𝐾)
65ffnd 6712 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 Fn 𝐽)
7 dffn4 6801 . . . 4 (𝐹 Fn 𝐽𝐹: 𝐽onto→ran 𝐹)
86, 7sylib 218 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽onto→ran 𝐹)
9 cntop2 23184 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
109adantl 481 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ Top)
115frnd 6719 . . . . 5 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 𝐾)
123restuni 23105 . . . . 5 ((𝐾 ∈ Top ∧ ran 𝐹 𝐾) → ran 𝐹 = (𝐾t ran 𝐹))
1310, 11, 12syl2anc 584 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 = (𝐾t ran 𝐹))
14 foeq3 6793 . . . 4 (ran 𝐹 = (𝐾t ran 𝐹) → (𝐹: 𝐽onto→ran 𝐹𝐹: 𝐽onto (𝐾t ran 𝐹)))
1513, 14syl 17 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹: 𝐽onto→ran 𝐹𝐹: 𝐽onto (𝐾t ran 𝐹)))
168, 15mpbid 232 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹: 𝐽onto (𝐾t ran 𝐹))
17 simpr 484 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn 𝐾))
18 toptopon2 22861 . . . . 5 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1910, 18sylib 218 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ (TopOn‘ 𝐾))
20 ssidd 3987 . . . 4 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → ran 𝐹 ⊆ ran 𝐹)
21 cnrest2 23229 . . . 4 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
2219, 20, 11, 21syl3anc 1373 . . 3 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
2317, 22mpbid 232 . 2 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
24 eqid 2736 . . 3 (𝐾t ran 𝐹) = (𝐾t ran 𝐹)
2524cncmp 23335 . 2 ((𝐽 ∈ Comp ∧ 𝐹: 𝐽onto (𝐾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))) → (𝐾t ran 𝐹) ∈ Comp)
261, 16, 23, 25syl3anc 1373 1 ((𝐽 ∈ Comp ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → (𝐾t ran 𝐹) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wss 3931   cuni 4888  ran crn 5660   Fn wfn 6531  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  t crest 17439  Topctop 22836  TopOnctopon 22853   Cn ccn 23167  Compccmp 23329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-1o 8485  df-map 8847  df-en 8965  df-dom 8966  df-fin 8968  df-fi 9428  df-rest 17441  df-topgen 17462  df-top 22837  df-topon 22854  df-bases 22889  df-cn 23170  df-cmp 23330
This theorem is referenced by:  imacmp  23340  kgencn2  23500  bndth  24913
  Copyright terms: Public domain W3C validator