Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrfo Structured version   Visualization version   GIF version

Theorem msrfo 32042
Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
msrfo.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
msrfo 𝑅:𝑃onto𝑆

Proof of Theorem msrfo
StepHypRef Expression
1 msrfo.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 mstaval.r . . . . 5 𝑅 = (mStRed‘𝑇)
31, 2msrf 32038 . . . 4 𝑅:𝑃𝑃
4 ffn 6291 . . . 4 (𝑅:𝑃𝑃𝑅 Fn 𝑃)
53, 4ax-mp 5 . . 3 𝑅 Fn 𝑃
6 dffn4 6372 . . 3 (𝑅 Fn 𝑃𝑅:𝑃onto→ran 𝑅)
75, 6mpbi 222 . 2 𝑅:𝑃onto→ran 𝑅
8 mstaval.s . . . 4 𝑆 = (mStat‘𝑇)
92, 8mstaval 32040 . . 3 𝑆 = ran 𝑅
10 foeq3 6364 . . 3 (𝑆 = ran 𝑅 → (𝑅:𝑃onto𝑆𝑅:𝑃onto→ran 𝑅))
119, 10ax-mp 5 . 2 (𝑅:𝑃onto𝑆𝑅:𝑃onto→ran 𝑅)
127, 11mpbir 223 1 𝑅:𝑃onto𝑆
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1601  ran crn 5356   Fn wfn 6130  wf 6131  ontowfo 6133  cfv 6135  mPreStcmpst 31969  mStRedcmsr 31970  mStatcmsta 31971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-ot 4407  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-1st 7445  df-2nd 7446  df-mpst 31989  df-msr 31990  df-msta 31991
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator