Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrfo Structured version   Visualization version   GIF version

Theorem msrfo 35531
Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
msrfo.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
msrfo 𝑅:𝑃onto𝑆

Proof of Theorem msrfo
StepHypRef Expression
1 msrfo.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 mstaval.r . . . . 5 𝑅 = (mStRed‘𝑇)
31, 2msrf 35527 . . . 4 𝑅:𝑃𝑃
4 ffn 6737 . . . 4 (𝑅:𝑃𝑃𝑅 Fn 𝑃)
53, 4ax-mp 5 . . 3 𝑅 Fn 𝑃
6 dffn4 6827 . . 3 (𝑅 Fn 𝑃𝑅:𝑃onto→ran 𝑅)
75, 6mpbi 230 . 2 𝑅:𝑃onto→ran 𝑅
8 mstaval.s . . . 4 𝑆 = (mStat‘𝑇)
92, 8mstaval 35529 . . 3 𝑆 = ran 𝑅
10 foeq3 6819 . . 3 (𝑆 = ran 𝑅 → (𝑅:𝑃onto𝑆𝑅:𝑃onto→ran 𝑅))
119, 10ax-mp 5 . 2 (𝑅:𝑃onto𝑆𝑅:𝑃onto→ran 𝑅)
127, 11mpbir 231 1 𝑅:𝑃onto𝑆
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  ran crn 5690   Fn wfn 6558  wf 6559  ontowfo 6561  cfv 6563  mPreStcmpst 35458  mStRedcmsr 35459  mStatcmsta 35460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-1st 8013  df-2nd 8014  df-mpst 35478  df-msr 35479  df-msta 35480
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator