![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msrfo | Structured version Visualization version GIF version |
Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
msrfo.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
msrfo | ⊢ 𝑅:𝑃–onto→𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msrfo.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
2 | mstaval.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
3 | 1, 2 | msrf 35527 | . . . 4 ⊢ 𝑅:𝑃⟶𝑃 |
4 | ffn 6737 | . . . 4 ⊢ (𝑅:𝑃⟶𝑃 → 𝑅 Fn 𝑃) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn 𝑃 |
6 | dffn4 6827 | . . 3 ⊢ (𝑅 Fn 𝑃 ↔ 𝑅:𝑃–onto→ran 𝑅) | |
7 | 5, 6 | mpbi 230 | . 2 ⊢ 𝑅:𝑃–onto→ran 𝑅 |
8 | mstaval.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
9 | 2, 8 | mstaval 35529 | . . 3 ⊢ 𝑆 = ran 𝑅 |
10 | foeq3 6819 | . . 3 ⊢ (𝑆 = ran 𝑅 → (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅)) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅) |
12 | 7, 11 | mpbir 231 | 1 ⊢ 𝑅:𝑃–onto→𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ran crn 5690 Fn wfn 6558 ⟶wf 6559 –onto→wfo 6561 ‘cfv 6563 mPreStcmpst 35458 mStRedcmsr 35459 mStatcmsta 35460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-ot 4640 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-1st 8013 df-2nd 8014 df-mpst 35478 df-msr 35479 df-msta 35480 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |