Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > msrfo | Structured version Visualization version GIF version |
Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
msrfo.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
msrfo | ⊢ 𝑅:𝑃–onto→𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msrfo.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
2 | mstaval.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
3 | 1, 2 | msrf 33504 | . . . 4 ⊢ 𝑅:𝑃⟶𝑃 |
4 | ffn 6600 | . . . 4 ⊢ (𝑅:𝑃⟶𝑃 → 𝑅 Fn 𝑃) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn 𝑃 |
6 | dffn4 6694 | . . 3 ⊢ (𝑅 Fn 𝑃 ↔ 𝑅:𝑃–onto→ran 𝑅) | |
7 | 5, 6 | mpbi 229 | . 2 ⊢ 𝑅:𝑃–onto→ran 𝑅 |
8 | mstaval.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
9 | 2, 8 | mstaval 33506 | . . 3 ⊢ 𝑆 = ran 𝑅 |
10 | foeq3 6686 | . . 3 ⊢ (𝑆 = ran 𝑅 → (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅)) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅) |
12 | 7, 11 | mpbir 230 | 1 ⊢ 𝑅:𝑃–onto→𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ran crn 5590 Fn wfn 6428 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 mPreStcmpst 33435 mStRedcmsr 33436 mStatcmsta 33437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-1st 7831 df-2nd 7832 df-mpst 33455 df-msr 33456 df-msta 33457 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |