| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msrfo | Structured version Visualization version GIF version | ||
| Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
| msrfo.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| msrfo | ⊢ 𝑅:𝑃–onto→𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msrfo.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | mstaval.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 3 | 1, 2 | msrf 35564 | . . . 4 ⊢ 𝑅:𝑃⟶𝑃 |
| 4 | ffn 6706 | . . . 4 ⊢ (𝑅:𝑃⟶𝑃 → 𝑅 Fn 𝑃) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn 𝑃 |
| 6 | dffn4 6796 | . . 3 ⊢ (𝑅 Fn 𝑃 ↔ 𝑅:𝑃–onto→ran 𝑅) | |
| 7 | 5, 6 | mpbi 230 | . 2 ⊢ 𝑅:𝑃–onto→ran 𝑅 |
| 8 | mstaval.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
| 9 | 2, 8 | mstaval 35566 | . . 3 ⊢ 𝑆 = ran 𝑅 |
| 10 | foeq3 6788 | . . 3 ⊢ (𝑆 = ran 𝑅 → (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅)) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅) |
| 12 | 7, 11 | mpbir 231 | 1 ⊢ 𝑅:𝑃–onto→𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ran crn 5655 Fn wfn 6526 ⟶wf 6527 –onto→wfo 6529 ‘cfv 6531 mPreStcmpst 35495 mStRedcmsr 35496 mStatcmsta 35497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-1st 7988 df-2nd 7989 df-mpst 35515 df-msr 35516 df-msta 35517 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |