Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrfo Structured version   Visualization version   GIF version

Theorem msrfo 35540
Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
msrfo.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
msrfo 𝑅:𝑃onto𝑆

Proof of Theorem msrfo
StepHypRef Expression
1 msrfo.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 mstaval.r . . . . 5 𝑅 = (mStRed‘𝑇)
31, 2msrf 35536 . . . 4 𝑅:𝑃𝑃
4 ffn 6691 . . . 4 (𝑅:𝑃𝑃𝑅 Fn 𝑃)
53, 4ax-mp 5 . . 3 𝑅 Fn 𝑃
6 dffn4 6781 . . 3 (𝑅 Fn 𝑃𝑅:𝑃onto→ran 𝑅)
75, 6mpbi 230 . 2 𝑅:𝑃onto→ran 𝑅
8 mstaval.s . . . 4 𝑆 = (mStat‘𝑇)
92, 8mstaval 35538 . . 3 𝑆 = ran 𝑅
10 foeq3 6773 . . 3 (𝑆 = ran 𝑅 → (𝑅:𝑃onto𝑆𝑅:𝑃onto→ran 𝑅))
119, 10ax-mp 5 . 2 (𝑅:𝑃onto𝑆𝑅:𝑃onto→ran 𝑅)
127, 11mpbir 231 1 𝑅:𝑃onto𝑆
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  ran crn 5642   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  mPreStcmpst 35467  mStRedcmsr 35468  mStatcmsta 35469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-ot 4601  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-1st 7971  df-2nd 7972  df-mpst 35487  df-msr 35488  df-msta 35489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator