![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msrfo | Structured version Visualization version GIF version |
Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstaval.r | β’ π = (mStRedβπ) |
mstaval.s | β’ π = (mStatβπ) |
msrfo.p | β’ π = (mPreStβπ) |
Ref | Expression |
---|---|
msrfo | β’ π :πβontoβπ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msrfo.p | . . . . 5 β’ π = (mPreStβπ) | |
2 | mstaval.r | . . . . 5 β’ π = (mStRedβπ) | |
3 | 1, 2 | msrf 34829 | . . . 4 β’ π :πβΆπ |
4 | ffn 6718 | . . . 4 β’ (π :πβΆπ β π Fn π) | |
5 | 3, 4 | ax-mp 5 | . . 3 β’ π Fn π |
6 | dffn4 6812 | . . 3 β’ (π Fn π β π :πβontoβran π ) | |
7 | 5, 6 | mpbi 229 | . 2 β’ π :πβontoβran π |
8 | mstaval.s | . . . 4 β’ π = (mStatβπ) | |
9 | 2, 8 | mstaval 34831 | . . 3 β’ π = ran π |
10 | foeq3 6804 | . . 3 β’ (π = ran π β (π :πβontoβπ β π :πβontoβran π )) | |
11 | 9, 10 | ax-mp 5 | . 2 β’ (π :πβontoβπ β π :πβontoβran π ) |
12 | 7, 11 | mpbir 230 | 1 β’ π :πβontoβπ |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1539 ran crn 5678 Fn wfn 6539 βΆwf 6540 βontoβwfo 6542 βcfv 6544 mPreStcmpst 34760 mStRedcmsr 34761 mStatcmsta 34762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-ot 4638 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-1st 7979 df-2nd 7980 df-mpst 34780 df-msr 34781 df-msta 34782 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |