| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msrfo | Structured version Visualization version GIF version | ||
| Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
| msrfo.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| msrfo | ⊢ 𝑅:𝑃–onto→𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msrfo.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | mstaval.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 3 | 1, 2 | msrf 35536 | . . . 4 ⊢ 𝑅:𝑃⟶𝑃 |
| 4 | ffn 6691 | . . . 4 ⊢ (𝑅:𝑃⟶𝑃 → 𝑅 Fn 𝑃) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn 𝑃 |
| 6 | dffn4 6781 | . . 3 ⊢ (𝑅 Fn 𝑃 ↔ 𝑅:𝑃–onto→ran 𝑅) | |
| 7 | 5, 6 | mpbi 230 | . 2 ⊢ 𝑅:𝑃–onto→ran 𝑅 |
| 8 | mstaval.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
| 9 | 2, 8 | mstaval 35538 | . . 3 ⊢ 𝑆 = ran 𝑅 |
| 10 | foeq3 6773 | . . 3 ⊢ (𝑆 = ran 𝑅 → (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅)) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅) |
| 12 | 7, 11 | mpbir 231 | 1 ⊢ 𝑅:𝑃–onto→𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ran crn 5642 Fn wfn 6509 ⟶wf 6510 –onto→wfo 6512 ‘cfv 6514 mPreStcmpst 35467 mStRedcmsr 35468 mStatcmsta 35469 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-ot 4601 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-1st 7971 df-2nd 7972 df-mpst 35487 df-msr 35488 df-msta 35489 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |