| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > msrfo | Structured version Visualization version GIF version | ||
| Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
| msrfo.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| Ref | Expression |
|---|---|
| msrfo | ⊢ 𝑅:𝑃–onto→𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msrfo.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 2 | mstaval.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 3 | 1, 2 | msrf 35586 | . . . 4 ⊢ 𝑅:𝑃⟶𝑃 |
| 4 | ffn 6651 | . . . 4 ⊢ (𝑅:𝑃⟶𝑃 → 𝑅 Fn 𝑃) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn 𝑃 |
| 6 | dffn4 6741 | . . 3 ⊢ (𝑅 Fn 𝑃 ↔ 𝑅:𝑃–onto→ran 𝑅) | |
| 7 | 5, 6 | mpbi 230 | . 2 ⊢ 𝑅:𝑃–onto→ran 𝑅 |
| 8 | mstaval.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
| 9 | 2, 8 | mstaval 35588 | . . 3 ⊢ 𝑆 = ran 𝑅 |
| 10 | foeq3 6733 | . . 3 ⊢ (𝑆 = ran 𝑅 → (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅)) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅) |
| 12 | 7, 11 | mpbir 231 | 1 ⊢ 𝑅:𝑃–onto→𝑆 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ran crn 5615 Fn wfn 6476 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 mPreStcmpst 35517 mStRedcmsr 35518 mStatcmsta 35519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-ot 4582 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-1st 7921 df-2nd 7922 df-mpst 35537 df-msr 35538 df-msta 35539 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |