![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > msrfo | Structured version Visualization version GIF version |
Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
msrfo.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
Ref | Expression |
---|---|
msrfo | ⊢ 𝑅:𝑃–onto→𝑆 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msrfo.p | . . . . 5 ⊢ 𝑃 = (mPreSt‘𝑇) | |
2 | mstaval.r | . . . . 5 ⊢ 𝑅 = (mStRed‘𝑇) | |
3 | 1, 2 | msrf 32038 | . . . 4 ⊢ 𝑅:𝑃⟶𝑃 |
4 | ffn 6291 | . . . 4 ⊢ (𝑅:𝑃⟶𝑃 → 𝑅 Fn 𝑃) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ 𝑅 Fn 𝑃 |
6 | dffn4 6372 | . . 3 ⊢ (𝑅 Fn 𝑃 ↔ 𝑅:𝑃–onto→ran 𝑅) | |
7 | 5, 6 | mpbi 222 | . 2 ⊢ 𝑅:𝑃–onto→ran 𝑅 |
8 | mstaval.s | . . . 4 ⊢ 𝑆 = (mStat‘𝑇) | |
9 | 2, 8 | mstaval 32040 | . . 3 ⊢ 𝑆 = ran 𝑅 |
10 | foeq3 6364 | . . 3 ⊢ (𝑆 = ran 𝑅 → (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅)) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (𝑅:𝑃–onto→𝑆 ↔ 𝑅:𝑃–onto→ran 𝑅) |
12 | 7, 11 | mpbir 223 | 1 ⊢ 𝑅:𝑃–onto→𝑆 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1601 ran crn 5356 Fn wfn 6130 ⟶wf 6131 –onto→wfo 6133 ‘cfv 6135 mPreStcmpst 31969 mStRedcmsr 31970 mStatcmsta 31971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-ot 4407 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-1st 7445 df-2nd 7446 df-mpst 31989 df-msr 31990 df-msta 31991 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |