Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrfo Structured version   Visualization version   GIF version

Theorem msrfo 35551
Description: The reduct of a pre-statement is a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
msrfo.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
msrfo 𝑅:𝑃onto𝑆

Proof of Theorem msrfo
StepHypRef Expression
1 msrfo.p . . . . 5 𝑃 = (mPreSt‘𝑇)
2 mstaval.r . . . . 5 𝑅 = (mStRed‘𝑇)
31, 2msrf 35547 . . . 4 𝑅:𝑃𝑃
4 ffn 6736 . . . 4 (𝑅:𝑃𝑃𝑅 Fn 𝑃)
53, 4ax-mp 5 . . 3 𝑅 Fn 𝑃
6 dffn4 6826 . . 3 (𝑅 Fn 𝑃𝑅:𝑃onto→ran 𝑅)
75, 6mpbi 230 . 2 𝑅:𝑃onto→ran 𝑅
8 mstaval.s . . . 4 𝑆 = (mStat‘𝑇)
92, 8mstaval 35549 . . 3 𝑆 = ran 𝑅
10 foeq3 6818 . . 3 (𝑆 = ran 𝑅 → (𝑅:𝑃onto𝑆𝑅:𝑃onto→ran 𝑅))
119, 10ax-mp 5 . 2 (𝑅:𝑃onto𝑆𝑅:𝑃onto→ran 𝑅)
127, 11mpbir 231 1 𝑅:𝑃onto𝑆
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  ran crn 5686   Fn wfn 6556  wf 6557  ontowfo 6559  cfv 6561  mPreStcmpst 35478  mStRedcmsr 35479  mStatcmsta 35480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-ot 4635  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-1st 8014  df-2nd 8015  df-mpst 35498  df-msr 35499  df-msta 35500
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator