MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncn Structured version   Visualization version   GIF version

Theorem conncn 23459
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
conncn.x 𝑋 = 𝐽
conncn.j (𝜑𝐽 ∈ Conn)
conncn.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
conncn.u (𝜑𝑈𝐾)
conncn.c (𝜑𝑈 ∈ (Clsd‘𝐾))
conncn.a (𝜑𝐴𝑋)
conncn.1 (𝜑 → (𝐹𝐴) ∈ 𝑈)
Assertion
Ref Expression
conncn (𝜑𝐹:𝑋𝑈)

Proof of Theorem conncn
StepHypRef Expression
1 conncn.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 conncn.x . . . . 5 𝑋 = 𝐽
3 eqid 2737 . . . . 5 𝐾 = 𝐾
42, 3cnf 23279 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
51, 4syl 17 . . 3 (𝜑𝐹:𝑋 𝐾)
65ffnd 6745 . 2 (𝜑𝐹 Fn 𝑋)
75frnd 6752 . . 3 (𝜑 → ran 𝐹 𝐾)
8 conncn.j . . . 4 (𝜑𝐽 ∈ Conn)
9 dffn4 6834 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
106, 9sylib 218 . . . . 5 (𝜑𝐹:𝑋onto→ran 𝐹)
11 cntop2 23274 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
121, 11syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
133restuni 23195 . . . . . . 7 ((𝐾 ∈ Top ∧ ran 𝐹 𝐾) → ran 𝐹 = (𝐾t ran 𝐹))
1412, 7, 13syl2anc 584 . . . . . 6 (𝜑 → ran 𝐹 = (𝐾t ran 𝐹))
15 foeq3 6826 . . . . . 6 (ran 𝐹 = (𝐾t ran 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1614, 15syl 17 . . . . 5 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1710, 16mpbid 232 . . . 4 (𝜑𝐹:𝑋onto (𝐾t ran 𝐹))
18 toptopon2 22949 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1912, 18sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
20 ssidd 4022 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ran 𝐹)
21 cnrest2 23319 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
2219, 20, 7, 21syl3anc 1372 . . . . 5 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
231, 22mpbid 232 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
24 eqid 2737 . . . . 5 (𝐾t ran 𝐹) = (𝐾t ran 𝐹)
2524cnconn 23455 . . . 4 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto (𝐾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))) → (𝐾t ran 𝐹) ∈ Conn)
268, 17, 23, 25syl3anc 1372 . . 3 (𝜑 → (𝐾t ran 𝐹) ∈ Conn)
27 conncn.u . . 3 (𝜑𝑈𝐾)
28 conncn.1 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝑈)
29 conncn.a . . . . 5 (𝜑𝐴𝑋)
30 fnfvelrn 7107 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
316, 29, 30syl2anc 584 . . . 4 (𝜑 → (𝐹𝐴) ∈ ran 𝐹)
32 inelcm 4474 . . . 4 (((𝐹𝐴) ∈ 𝑈 ∧ (𝐹𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅)
3328, 31, 32syl2anc 584 . . 3 (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅)
34 conncn.c . . 3 (𝜑𝑈 ∈ (Clsd‘𝐾))
353, 7, 26, 27, 33, 34connsubclo 23457 . 2 (𝜑 → ran 𝐹𝑈)
36 df-f 6573 . 2 (𝐹:𝑋𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹𝑈))
376, 35, 36sylanbrc 583 1 (𝜑𝐹:𝑋𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wcel 2108  wne 2940  cin 3965  wss 3966  c0 4342   cuni 4915  ran crn 5694   Fn wfn 6564  wf 6565  ontowfo 6567  cfv 6569  (class class class)co 7438  t crest 17476  Topctop 22924  TopOnctopon 22941  Clsdccld 23049   Cn ccn 23257  Conncconn 23444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-map 8876  df-en 8994  df-fin 8997  df-fi 9458  df-rest 17478  df-topgen 17499  df-top 22925  df-topon 22942  df-bases 22978  df-cld 23052  df-cn 23260  df-conn 23445
This theorem is referenced by:  pconnconn  35229  cvmliftmolem1  35279  cvmlift2lem9  35309  cvmlift3lem6  35322
  Copyright terms: Public domain W3C validator