| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conncn | Structured version Visualization version GIF version | ||
| Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| conncn.x | ⊢ 𝑋 = ∪ 𝐽 |
| conncn.j | ⊢ (𝜑 → 𝐽 ∈ Conn) |
| conncn.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| conncn.u | ⊢ (𝜑 → 𝑈 ∈ 𝐾) |
| conncn.c | ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) |
| conncn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| conncn.1 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) |
| Ref | Expression |
|---|---|
| conncn | ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncn.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | conncn.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | eqid 2731 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23156 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
| 6 | 5 | ffnd 6647 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 7 | 5 | frnd 6654 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐾) |
| 8 | conncn.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
| 9 | dffn4 6736 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
| 10 | 6, 9 | sylib 218 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋–onto→ran 𝐹) |
| 11 | cntop2 23151 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 12 | 1, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 13 | 3 | restuni 23072 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
| 14 | 12, 7, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
| 15 | foeq3 6728 | . . . . . 6 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) |
| 17 | 10, 16 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹)) |
| 18 | toptopon2 22828 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 19 | 12, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 20 | ssidd 3953 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 ⊆ ran 𝐹) | |
| 21 | cnrest2 23196 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
| 22 | 19, 20, 7, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) |
| 23 | 1, 22 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) |
| 24 | eqid 2731 | . . . . 5 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
| 25 | 24 | cnconn 23332 | . . . 4 ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Conn) |
| 26 | 8, 17, 23, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐾 ↾t ran 𝐹) ∈ Conn) |
| 27 | conncn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐾) | |
| 28 | conncn.1 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) | |
| 29 | conncn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 30 | fnfvelrn 7008 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐹) | |
| 31 | 6, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ran 𝐹) |
| 32 | inelcm 4410 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ 𝑈 ∧ (𝐹‘𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅) | |
| 33 | 28, 31, 32 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅) |
| 34 | conncn.c | . . 3 ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) | |
| 35 | 3, 7, 26, 27, 33, 34 | connsubclo 23334 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑈) |
| 36 | df-f 6480 | . 2 ⊢ (𝐹:𝑋⟶𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹 ⊆ 𝑈)) | |
| 37 | 6, 35, 36 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3896 ⊆ wss 3897 ∅c0 4278 ∪ cuni 4854 ran crn 5612 Fn wfn 6471 ⟶wf 6472 –onto→wfo 6474 ‘cfv 6476 (class class class)co 7341 ↾t crest 17319 Topctop 22803 TopOnctopon 22820 Clsdccld 22926 Cn ccn 23134 Conncconn 23321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-map 8747 df-en 8865 df-fin 8868 df-fi 9290 df-rest 17321 df-topgen 17342 df-top 22804 df-topon 22821 df-bases 22856 df-cld 22929 df-cn 23137 df-conn 23322 |
| This theorem is referenced by: pconnconn 35267 cvmliftmolem1 35317 cvmlift2lem9 35347 cvmlift3lem6 35360 |
| Copyright terms: Public domain | W3C validator |