Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > conncn | Structured version Visualization version GIF version |
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
conncn.x | ⊢ 𝑋 = ∪ 𝐽 |
conncn.j | ⊢ (𝜑 → 𝐽 ∈ Conn) |
conncn.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
conncn.u | ⊢ (𝜑 → 𝑈 ∈ 𝐾) |
conncn.c | ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) |
conncn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
conncn.1 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) |
Ref | Expression |
---|---|
conncn | ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conncn.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | conncn.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
4 | 2, 3 | cnf 22305 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
6 | 5 | ffnd 6585 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
7 | 5 | frnd 6592 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐾) |
8 | conncn.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
9 | dffn4 6678 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
10 | 6, 9 | sylib 217 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋–onto→ran 𝐹) |
11 | cntop2 22300 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
12 | 1, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
13 | 3 | restuni 22221 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
14 | 12, 7, 13 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
15 | foeq3 6670 | . . . . . 6 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) |
17 | 10, 16 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹)) |
18 | toptopon2 21975 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
19 | 12, 18 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
20 | ssidd 3940 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 ⊆ ran 𝐹) | |
21 | cnrest2 22345 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
22 | 19, 20, 7, 21 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) |
23 | 1, 22 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) |
24 | eqid 2738 | . . . . 5 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
25 | 24 | cnconn 22481 | . . . 4 ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Conn) |
26 | 8, 17, 23, 25 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝐾 ↾t ran 𝐹) ∈ Conn) |
27 | conncn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐾) | |
28 | conncn.1 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) | |
29 | conncn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
30 | fnfvelrn 6940 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐹) | |
31 | 6, 29, 30 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ran 𝐹) |
32 | inelcm 4395 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ 𝑈 ∧ (𝐹‘𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅) | |
33 | 28, 31, 32 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅) |
34 | conncn.c | . . 3 ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) | |
35 | 3, 7, 26, 27, 33, 34 | connsubclo 22483 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑈) |
36 | df-f 6422 | . 2 ⊢ (𝐹:𝑋⟶𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹 ⊆ 𝑈)) | |
37 | 6, 35, 36 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ran crn 5581 Fn wfn 6413 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 Topctop 21950 TopOnctopon 21967 Clsdccld 22075 Cn ccn 22283 Conncconn 22470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-map 8575 df-en 8692 df-fin 8695 df-fi 9100 df-rest 17050 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cld 22078 df-cn 22286 df-conn 22471 |
This theorem is referenced by: pconnconn 33093 cvmliftmolem1 33143 cvmlift2lem9 33173 cvmlift3lem6 33186 |
Copyright terms: Public domain | W3C validator |