MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncn Structured version   Visualization version   GIF version

Theorem conncn 22649
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
conncn.x 𝑋 = 𝐽
conncn.j (𝜑𝐽 ∈ Conn)
conncn.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
conncn.u (𝜑𝑈𝐾)
conncn.c (𝜑𝑈 ∈ (Clsd‘𝐾))
conncn.a (𝜑𝐴𝑋)
conncn.1 (𝜑 → (𝐹𝐴) ∈ 𝑈)
Assertion
Ref Expression
conncn (𝜑𝐹:𝑋𝑈)

Proof of Theorem conncn
StepHypRef Expression
1 conncn.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 conncn.x . . . . 5 𝑋 = 𝐽
3 eqid 2737 . . . . 5 𝐾 = 𝐾
42, 3cnf 22469 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
51, 4syl 17 . . 3 (𝜑𝐹:𝑋 𝐾)
65ffnd 6638 . 2 (𝜑𝐹 Fn 𝑋)
75frnd 6645 . . 3 (𝜑 → ran 𝐹 𝐾)
8 conncn.j . . . 4 (𝜑𝐽 ∈ Conn)
9 dffn4 6731 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
106, 9sylib 217 . . . . 5 (𝜑𝐹:𝑋onto→ran 𝐹)
11 cntop2 22464 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
121, 11syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
133restuni 22385 . . . . . . 7 ((𝐾 ∈ Top ∧ ran 𝐹 𝐾) → ran 𝐹 = (𝐾t ran 𝐹))
1412, 7, 13syl2anc 584 . . . . . 6 (𝜑 → ran 𝐹 = (𝐾t ran 𝐹))
15 foeq3 6723 . . . . . 6 (ran 𝐹 = (𝐾t ran 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1614, 15syl 17 . . . . 5 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1710, 16mpbid 231 . . . 4 (𝜑𝐹:𝑋onto (𝐾t ran 𝐹))
18 toptopon2 22139 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1912, 18sylib 217 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
20 ssidd 3954 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ran 𝐹)
21 cnrest2 22509 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
2219, 20, 7, 21syl3anc 1370 . . . . 5 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
231, 22mpbid 231 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
24 eqid 2737 . . . . 5 (𝐾t ran 𝐹) = (𝐾t ran 𝐹)
2524cnconn 22645 . . . 4 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto (𝐾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))) → (𝐾t ran 𝐹) ∈ Conn)
268, 17, 23, 25syl3anc 1370 . . 3 (𝜑 → (𝐾t ran 𝐹) ∈ Conn)
27 conncn.u . . 3 (𝜑𝑈𝐾)
28 conncn.1 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝑈)
29 conncn.a . . . . 5 (𝜑𝐴𝑋)
30 fnfvelrn 6997 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
316, 29, 30syl2anc 584 . . . 4 (𝜑 → (𝐹𝐴) ∈ ran 𝐹)
32 inelcm 4409 . . . 4 (((𝐹𝐴) ∈ 𝑈 ∧ (𝐹𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅)
3328, 31, 32syl2anc 584 . . 3 (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅)
34 conncn.c . . 3 (𝜑𝑈 ∈ (Clsd‘𝐾))
353, 7, 26, 27, 33, 34connsubclo 22647 . 2 (𝜑 → ran 𝐹𝑈)
36 df-f 6469 . 2 (𝐹:𝑋𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹𝑈))
376, 35, 36sylanbrc 583 1 (𝜑𝐹:𝑋𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  wne 2941  cin 3896  wss 3897  c0 4267   cuni 4850  ran crn 5608   Fn wfn 6460  wf 6461  ontowfo 6463  cfv 6465  (class class class)co 7315  t crest 17201  Topctop 22114  TopOnctopon 22131  Clsdccld 22239   Cn ccn 22447  Conncconn 22634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-map 8665  df-en 8782  df-fin 8785  df-fi 9240  df-rest 17203  df-topgen 17224  df-top 22115  df-topon 22132  df-bases 22168  df-cld 22242  df-cn 22450  df-conn 22635
This theorem is referenced by:  pconnconn  33298  cvmliftmolem1  33348  cvmlift2lem9  33378  cvmlift3lem6  33391
  Copyright terms: Public domain W3C validator