MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncn Structured version   Visualization version   GIF version

Theorem conncn 22012
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
conncn.x 𝑋 = 𝐽
conncn.j (𝜑𝐽 ∈ Conn)
conncn.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
conncn.u (𝜑𝑈𝐾)
conncn.c (𝜑𝑈 ∈ (Clsd‘𝐾))
conncn.a (𝜑𝐴𝑋)
conncn.1 (𝜑 → (𝐹𝐴) ∈ 𝑈)
Assertion
Ref Expression
conncn (𝜑𝐹:𝑋𝑈)

Proof of Theorem conncn
StepHypRef Expression
1 conncn.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 conncn.x . . . . 5 𝑋 = 𝐽
3 eqid 2820 . . . . 5 𝐾 = 𝐾
42, 3cnf 21832 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
51, 4syl 17 . . 3 (𝜑𝐹:𝑋 𝐾)
65ffnd 6496 . 2 (𝜑𝐹 Fn 𝑋)
75frnd 6502 . . 3 (𝜑 → ran 𝐹 𝐾)
8 conncn.j . . . 4 (𝜑𝐽 ∈ Conn)
9 dffn4 6577 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
106, 9sylib 220 . . . . 5 (𝜑𝐹:𝑋onto→ran 𝐹)
11 cntop2 21827 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
121, 11syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
133restuni 21748 . . . . . . 7 ((𝐾 ∈ Top ∧ ran 𝐹 𝐾) → ran 𝐹 = (𝐾t ran 𝐹))
1412, 7, 13syl2anc 586 . . . . . 6 (𝜑 → ran 𝐹 = (𝐾t ran 𝐹))
15 foeq3 6569 . . . . . 6 (ran 𝐹 = (𝐾t ran 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1614, 15syl 17 . . . . 5 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1710, 16mpbid 234 . . . 4 (𝜑𝐹:𝑋onto (𝐾t ran 𝐹))
18 toptopon2 21504 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1912, 18sylib 220 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
20 ssidd 3973 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ran 𝐹)
21 cnrest2 21872 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
2219, 20, 7, 21syl3anc 1367 . . . . 5 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
231, 22mpbid 234 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
24 eqid 2820 . . . . 5 (𝐾t ran 𝐹) = (𝐾t ran 𝐹)
2524cnconn 22008 . . . 4 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto (𝐾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))) → (𝐾t ran 𝐹) ∈ Conn)
268, 17, 23, 25syl3anc 1367 . . 3 (𝜑 → (𝐾t ran 𝐹) ∈ Conn)
27 conncn.u . . 3 (𝜑𝑈𝐾)
28 conncn.1 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝑈)
29 conncn.a . . . . 5 (𝜑𝐴𝑋)
30 fnfvelrn 6829 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
316, 29, 30syl2anc 586 . . . 4 (𝜑 → (𝐹𝐴) ∈ ran 𝐹)
32 inelcm 4395 . . . 4 (((𝐹𝐴) ∈ 𝑈 ∧ (𝐹𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅)
3328, 31, 32syl2anc 586 . . 3 (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅)
34 conncn.c . . 3 (𝜑𝑈 ∈ (Clsd‘𝐾))
353, 7, 26, 27, 33, 34connsubclo 22010 . 2 (𝜑 → ran 𝐹𝑈)
36 df-f 6340 . 2 (𝐹:𝑋𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹𝑈))
376, 35, 36sylanbrc 585 1 (𝜑𝐹:𝑋𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  wne 3011  cin 3918  wss 3919  c0 4274   cuni 4819  ran crn 5537   Fn wfn 6331  wf 6332  ontowfo 6334  cfv 6336  (class class class)co 7137  t crest 16672  Topctop 21479  TopOnctopon 21496  Clsdccld 21602   Cn ccn 21810  Conncconn 21997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7140  df-oprab 7141  df-mpo 7142  df-om 7562  df-1st 7670  df-2nd 7671  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-oadd 8087  df-er 8270  df-map 8389  df-en 8491  df-fin 8494  df-fi 8856  df-rest 16674  df-topgen 16695  df-top 21480  df-topon 21497  df-bases 21532  df-cld 21605  df-cn 21813  df-conn 21998
This theorem is referenced by:  pconnconn  32480  cvmliftmolem1  32530  cvmlift2lem9  32560  cvmlift3lem6  32573
  Copyright terms: Public domain W3C validator