| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conncn | Structured version Visualization version GIF version | ||
| Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| conncn.x | ⊢ 𝑋 = ∪ 𝐽 |
| conncn.j | ⊢ (𝜑 → 𝐽 ∈ Conn) |
| conncn.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| conncn.u | ⊢ (𝜑 → 𝑈 ∈ 𝐾) |
| conncn.c | ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) |
| conncn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| conncn.1 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) |
| Ref | Expression |
|---|---|
| conncn | ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncn.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | conncn.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23181 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
| 6 | 5 | ffnd 6660 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 7 | 5 | frnd 6667 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐾) |
| 8 | conncn.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
| 9 | dffn4 6749 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
| 10 | 6, 9 | sylib 218 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋–onto→ran 𝐹) |
| 11 | cntop2 23176 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 12 | 1, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 13 | 3 | restuni 23097 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
| 14 | 12, 7, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
| 15 | foeq3 6741 | . . . . . 6 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) |
| 17 | 10, 16 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹)) |
| 18 | toptopon2 22853 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 19 | 12, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 20 | ssidd 3954 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 ⊆ ran 𝐹) | |
| 21 | cnrest2 23221 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
| 22 | 19, 20, 7, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) |
| 23 | 1, 22 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) |
| 24 | eqid 2733 | . . . . 5 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
| 25 | 24 | cnconn 23357 | . . . 4 ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Conn) |
| 26 | 8, 17, 23, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐾 ↾t ran 𝐹) ∈ Conn) |
| 27 | conncn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐾) | |
| 28 | conncn.1 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) | |
| 29 | conncn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 30 | fnfvelrn 7022 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐹) | |
| 31 | 6, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ran 𝐹) |
| 32 | inelcm 4414 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ 𝑈 ∧ (𝐹‘𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅) | |
| 33 | 28, 31, 32 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅) |
| 34 | conncn.c | . . 3 ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) | |
| 35 | 3, 7, 26, 27, 33, 34 | connsubclo 23359 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑈) |
| 36 | df-f 6493 | . 2 ⊢ (𝐹:𝑋⟶𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹 ⊆ 𝑈)) | |
| 37 | 6, 35, 36 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 ∪ cuni 4860 ran crn 5622 Fn wfn 6484 ⟶wf 6485 –onto→wfo 6487 ‘cfv 6489 (class class class)co 7355 ↾t crest 17331 Topctop 22828 TopOnctopon 22845 Clsdccld 22951 Cn ccn 23159 Conncconn 23346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-map 8761 df-en 8880 df-fin 8883 df-fi 9306 df-rest 17333 df-topgen 17354 df-top 22829 df-topon 22846 df-bases 22881 df-cld 22954 df-cn 23162 df-conn 23347 |
| This theorem is referenced by: pconnconn 35347 cvmliftmolem1 35397 cvmlift2lem9 35427 cvmlift3lem6 35440 |
| Copyright terms: Public domain | W3C validator |