| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conncn | Structured version Visualization version GIF version | ||
| Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| conncn.x | ⊢ 𝑋 = ∪ 𝐽 |
| conncn.j | ⊢ (𝜑 → 𝐽 ∈ Conn) |
| conncn.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| conncn.u | ⊢ (𝜑 → 𝑈 ∈ 𝐾) |
| conncn.c | ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) |
| conncn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| conncn.1 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) |
| Ref | Expression |
|---|---|
| conncn | ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncn.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | conncn.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | eqid 2734 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23200 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
| 6 | 5 | ffnd 6717 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 7 | 5 | frnd 6724 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐾) |
| 8 | conncn.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
| 9 | dffn4 6806 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
| 10 | 6, 9 | sylib 218 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋–onto→ran 𝐹) |
| 11 | cntop2 23195 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 12 | 1, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 13 | 3 | restuni 23116 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
| 14 | 12, 7, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
| 15 | foeq3 6798 | . . . . . 6 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) |
| 17 | 10, 16 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹)) |
| 18 | toptopon2 22872 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 19 | 12, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 20 | ssidd 3987 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 ⊆ ran 𝐹) | |
| 21 | cnrest2 23240 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
| 22 | 19, 20, 7, 21 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) |
| 23 | 1, 22 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) |
| 24 | eqid 2734 | . . . . 5 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
| 25 | 24 | cnconn 23376 | . . . 4 ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Conn) |
| 26 | 8, 17, 23, 25 | syl3anc 1372 | . . 3 ⊢ (𝜑 → (𝐾 ↾t ran 𝐹) ∈ Conn) |
| 27 | conncn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐾) | |
| 28 | conncn.1 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) | |
| 29 | conncn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 30 | fnfvelrn 7080 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐹) | |
| 31 | 6, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ran 𝐹) |
| 32 | inelcm 4445 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ 𝑈 ∧ (𝐹‘𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅) | |
| 33 | 28, 31, 32 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅) |
| 34 | conncn.c | . . 3 ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) | |
| 35 | 3, 7, 26, 27, 33, 34 | connsubclo 23378 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑈) |
| 36 | df-f 6545 | . 2 ⊢ (𝐹:𝑋⟶𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹 ⊆ 𝑈)) | |
| 37 | 6, 35, 36 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 ∪ cuni 4887 ran crn 5666 Fn wfn 6536 ⟶wf 6537 –onto→wfo 6539 ‘cfv 6541 (class class class)co 7413 ↾t crest 17436 Topctop 22847 TopOnctopon 22864 Clsdccld 22970 Cn ccn 23178 Conncconn 23365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-map 8850 df-en 8968 df-fin 8971 df-fi 9433 df-rest 17438 df-topgen 17459 df-top 22848 df-topon 22865 df-bases 22900 df-cld 22973 df-cn 23181 df-conn 23366 |
| This theorem is referenced by: pconnconn 35195 cvmliftmolem1 35245 cvmlift2lem9 35275 cvmlift3lem6 35288 |
| Copyright terms: Public domain | W3C validator |