MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conncn Structured version   Visualization version   GIF version

Theorem conncn 23457
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
conncn.x 𝑋 = 𝐽
conncn.j (𝜑𝐽 ∈ Conn)
conncn.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
conncn.u (𝜑𝑈𝐾)
conncn.c (𝜑𝑈 ∈ (Clsd‘𝐾))
conncn.a (𝜑𝐴𝑋)
conncn.1 (𝜑 → (𝐹𝐴) ∈ 𝑈)
Assertion
Ref Expression
conncn (𝜑𝐹:𝑋𝑈)

Proof of Theorem conncn
StepHypRef Expression
1 conncn.f . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
2 conncn.x . . . . 5 𝑋 = 𝐽
3 eqid 2740 . . . . 5 𝐾 = 𝐾
42, 3cnf 23277 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
51, 4syl 17 . . 3 (𝜑𝐹:𝑋 𝐾)
65ffnd 6750 . 2 (𝜑𝐹 Fn 𝑋)
75frnd 6757 . . 3 (𝜑 → ran 𝐹 𝐾)
8 conncn.j . . . 4 (𝜑𝐽 ∈ Conn)
9 dffn4 6842 . . . . . 6 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
106, 9sylib 218 . . . . 5 (𝜑𝐹:𝑋onto→ran 𝐹)
11 cntop2 23272 . . . . . . . 8 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
121, 11syl 17 . . . . . . 7 (𝜑𝐾 ∈ Top)
133restuni 23193 . . . . . . 7 ((𝐾 ∈ Top ∧ ran 𝐹 𝐾) → ran 𝐹 = (𝐾t ran 𝐹))
1412, 7, 13syl2anc 583 . . . . . 6 (𝜑 → ran 𝐹 = (𝐾t ran 𝐹))
15 foeq3 6834 . . . . . 6 (ran 𝐹 = (𝐾t ran 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1614, 15syl 17 . . . . 5 (𝜑 → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐾t ran 𝐹)))
1710, 16mpbid 232 . . . 4 (𝜑𝐹:𝑋onto (𝐾t ran 𝐹))
18 toptopon2 22947 . . . . . . 7 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
1912, 18sylib 218 . . . . . 6 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
20 ssidd 4032 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ran 𝐹)
21 cnrest2 23317 . . . . . 6 ((𝐾 ∈ (TopOn‘ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
2219, 20, 7, 21syl3anc 1371 . . . . 5 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))))
231, 22mpbid 232 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹)))
24 eqid 2740 . . . . 5 (𝐾t ran 𝐹) = (𝐾t ran 𝐹)
2524cnconn 23453 . . . 4 ((𝐽 ∈ Conn ∧ 𝐹:𝑋onto (𝐾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾t ran 𝐹))) → (𝐾t ran 𝐹) ∈ Conn)
268, 17, 23, 25syl3anc 1371 . . 3 (𝜑 → (𝐾t ran 𝐹) ∈ Conn)
27 conncn.u . . 3 (𝜑𝑈𝐾)
28 conncn.1 . . . 4 (𝜑 → (𝐹𝐴) ∈ 𝑈)
29 conncn.a . . . . 5 (𝜑𝐴𝑋)
30 fnfvelrn 7116 . . . . 5 ((𝐹 Fn 𝑋𝐴𝑋) → (𝐹𝐴) ∈ ran 𝐹)
316, 29, 30syl2anc 583 . . . 4 (𝜑 → (𝐹𝐴) ∈ ran 𝐹)
32 inelcm 4488 . . . 4 (((𝐹𝐴) ∈ 𝑈 ∧ (𝐹𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅)
3328, 31, 32syl2anc 583 . . 3 (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅)
34 conncn.c . . 3 (𝜑𝑈 ∈ (Clsd‘𝐾))
353, 7, 26, 27, 33, 34connsubclo 23455 . 2 (𝜑 → ran 𝐹𝑈)
36 df-f 6579 . 2 (𝐹:𝑋𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹𝑈))
376, 35, 36sylanbrc 582 1 (𝜑𝐹:𝑋𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wne 2946  cin 3975  wss 3976  c0 4352   cuni 4931  ran crn 5701   Fn wfn 6570  wf 6571  ontowfo 6573  cfv 6575  (class class class)co 7450  t crest 17482  Topctop 22922  TopOnctopon 22939  Clsdccld 23047   Cn ccn 23255  Conncconn 23442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-1st 8032  df-2nd 8033  df-map 8888  df-en 9006  df-fin 9009  df-fi 9482  df-rest 17484  df-topgen 17505  df-top 22923  df-topon 22940  df-bases 22976  df-cld 23050  df-cn 23258  df-conn 23443
This theorem is referenced by:  pconnconn  35201  cvmliftmolem1  35251  cvmlift2lem9  35281  cvmlift3lem6  35294
  Copyright terms: Public domain W3C validator