| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > conncn | Structured version Visualization version GIF version | ||
| Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
| Ref | Expression |
|---|---|
| conncn.x | ⊢ 𝑋 = ∪ 𝐽 |
| conncn.j | ⊢ (𝜑 → 𝐽 ∈ Conn) |
| conncn.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| conncn.u | ⊢ (𝜑 → 𝑈 ∈ 𝐾) |
| conncn.c | ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) |
| conncn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| conncn.1 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) |
| Ref | Expression |
|---|---|
| conncn | ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | conncn.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 2 | conncn.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
| 3 | eqid 2730 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 4 | 2, 3 | cnf 23139 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
| 6 | 5 | ffnd 6691 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
| 7 | 5 | frnd 6698 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐾) |
| 8 | conncn.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
| 9 | dffn4 6780 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
| 10 | 6, 9 | sylib 218 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋–onto→ran 𝐹) |
| 11 | cntop2 23134 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 12 | 1, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
| 13 | 3 | restuni 23055 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
| 14 | 12, 7, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
| 15 | foeq3 6772 | . . . . . 6 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) | |
| 16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) |
| 17 | 10, 16 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹)) |
| 18 | toptopon2 22811 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
| 19 | 12, 18 | sylib 218 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
| 20 | ssidd 3972 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 ⊆ ran 𝐹) | |
| 21 | cnrest2 23179 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
| 22 | 19, 20, 7, 21 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) |
| 23 | 1, 22 | mpbid 232 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) |
| 24 | eqid 2730 | . . . . 5 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
| 25 | 24 | cnconn 23315 | . . . 4 ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Conn) |
| 26 | 8, 17, 23, 25 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝐾 ↾t ran 𝐹) ∈ Conn) |
| 27 | conncn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐾) | |
| 28 | conncn.1 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) | |
| 29 | conncn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 30 | fnfvelrn 7054 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐹) | |
| 31 | 6, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ran 𝐹) |
| 32 | inelcm 4430 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ 𝑈 ∧ (𝐹‘𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅) | |
| 33 | 28, 31, 32 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅) |
| 34 | conncn.c | . . 3 ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) | |
| 35 | 3, 7, 26, 27, 33, 34 | connsubclo 23317 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑈) |
| 36 | df-f 6517 | . 2 ⊢ (𝐹:𝑋⟶𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹 ⊆ 𝑈)) | |
| 37 | 6, 35, 36 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3915 ⊆ wss 3916 ∅c0 4298 ∪ cuni 4873 ran crn 5641 Fn wfn 6508 ⟶wf 6509 –onto→wfo 6511 ‘cfv 6513 (class class class)co 7389 ↾t crest 17389 Topctop 22786 TopOnctopon 22803 Clsdccld 22909 Cn ccn 23117 Conncconn 23304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-map 8803 df-en 8921 df-fin 8924 df-fi 9368 df-rest 17391 df-topgen 17412 df-top 22787 df-topon 22804 df-bases 22839 df-cld 22912 df-cn 23120 df-conn 23305 |
| This theorem is referenced by: pconnconn 35218 cvmliftmolem1 35268 cvmlift2lem9 35298 cvmlift3lem6 35311 |
| Copyright terms: Public domain | W3C validator |