Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > conncn | Structured version Visualization version GIF version |
Description: A continuous function from a connected topology with one point in a clopen set must lie entirely within the set. (Contributed by Mario Carneiro, 16-Feb-2015.) |
Ref | Expression |
---|---|
conncn.x | ⊢ 𝑋 = ∪ 𝐽 |
conncn.j | ⊢ (𝜑 → 𝐽 ∈ Conn) |
conncn.f | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
conncn.u | ⊢ (𝜑 → 𝑈 ∈ 𝐾) |
conncn.c | ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) |
conncn.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
conncn.1 | ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) |
Ref | Expression |
---|---|
conncn | ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conncn.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
2 | conncn.x | . . . . 5 ⊢ 𝑋 = ∪ 𝐽 | |
3 | eqid 2737 | . . . . 5 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
4 | 2, 3 | cnf 22469 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
5 | 1, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶∪ 𝐾) |
6 | 5 | ffnd 6638 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝑋) |
7 | 5 | frnd 6645 | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ ∪ 𝐾) |
8 | conncn.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Conn) | |
9 | dffn4 6731 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
10 | 6, 9 | sylib 217 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑋–onto→ran 𝐹) |
11 | cntop2 22464 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
12 | 1, 11 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ Top) |
13 | 3 | restuni 22385 | . . . . . . 7 ⊢ ((𝐾 ∈ Top ∧ ran 𝐹 ⊆ ∪ 𝐾) → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
14 | 12, 7, 13 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹)) |
15 | foeq3 6723 | . . . . . 6 ⊢ (ran 𝐹 = ∪ (𝐾 ↾t ran 𝐹) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) | |
16 | 14, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹))) |
17 | 10, 16 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹)) |
18 | toptopon2 22139 | . . . . . . 7 ⊢ (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘∪ 𝐾)) | |
19 | 12, 18 | sylib 217 | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘∪ 𝐾)) |
20 | ssidd 3954 | . . . . . 6 ⊢ (𝜑 → ran 𝐹 ⊆ ran 𝐹) | |
21 | cnrest2 22509 | . . . . . 6 ⊢ ((𝐾 ∈ (TopOn‘∪ 𝐾) ∧ ran 𝐹 ⊆ ran 𝐹 ∧ ran 𝐹 ⊆ ∪ 𝐾) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) | |
22 | 19, 20, 7, 21 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹)))) |
23 | 1, 22 | mpbid 231 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) |
24 | eqid 2737 | . . . . 5 ⊢ ∪ (𝐾 ↾t ran 𝐹) = ∪ (𝐾 ↾t ran 𝐹) | |
25 | 24 | cnconn 22645 | . . . 4 ⊢ ((𝐽 ∈ Conn ∧ 𝐹:𝑋–onto→∪ (𝐾 ↾t ran 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t ran 𝐹))) → (𝐾 ↾t ran 𝐹) ∈ Conn) |
26 | 8, 17, 23, 25 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝐾 ↾t ran 𝐹) ∈ Conn) |
27 | conncn.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐾) | |
28 | conncn.1 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑈) | |
29 | conncn.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
30 | fnfvelrn 6997 | . . . . 5 ⊢ ((𝐹 Fn 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴) ∈ ran 𝐹) | |
31 | 6, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐹‘𝐴) ∈ ran 𝐹) |
32 | inelcm 4409 | . . . 4 ⊢ (((𝐹‘𝐴) ∈ 𝑈 ∧ (𝐹‘𝐴) ∈ ran 𝐹) → (𝑈 ∩ ran 𝐹) ≠ ∅) | |
33 | 28, 31, 32 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑈 ∩ ran 𝐹) ≠ ∅) |
34 | conncn.c | . . 3 ⊢ (𝜑 → 𝑈 ∈ (Clsd‘𝐾)) | |
35 | 3, 7, 26, 27, 33, 34 | connsubclo 22647 | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ 𝑈) |
36 | df-f 6469 | . 2 ⊢ (𝐹:𝑋⟶𝑈 ↔ (𝐹 Fn 𝑋 ∧ ran 𝐹 ⊆ 𝑈)) | |
37 | 6, 35, 36 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝑋⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∩ cin 3896 ⊆ wss 3897 ∅c0 4267 ∪ cuni 4850 ran crn 5608 Fn wfn 6460 ⟶wf 6461 –onto→wfo 6463 ‘cfv 6465 (class class class)co 7315 ↾t crest 17201 Topctop 22114 TopOnctopon 22131 Clsdccld 22239 Cn ccn 22447 Conncconn 22634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-1st 7876 df-2nd 7877 df-map 8665 df-en 8782 df-fin 8785 df-fi 9240 df-rest 17203 df-topgen 17224 df-top 22115 df-topon 22132 df-bases 22168 df-cld 22242 df-cn 22450 df-conn 22635 |
This theorem is referenced by: pconnconn 33298 cvmliftmolem1 33348 cvmlift2lem9 33378 cvmlift3lem6 33391 |
Copyright terms: Public domain | W3C validator |