MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrhfo Structured version   Visualization version   GIF version

Theorem znzrhfo 21087
Description: The ring homomorphism is a surjection onto ℤ / 𝑛. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
znzrhfo.y 𝑌 = (ℤ/nℤ‘𝑁)
znzrhfo.b 𝐵 = (Base‘𝑌)
znzrhfo.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znzrhfo (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)

Proof of Theorem znzrhfo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . . . 4 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
2 zringbas 21008 . . . . 5 ℤ = (Base‘ℤring)
32a1i 11 . . . 4 (𝑁 ∈ ℕ0 → ℤ = (Base‘ℤring))
4 eqid 2733 . . . 4 (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
5 ovexd 7439 . . . 4 (𝑁 ∈ ℕ0 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) ∈ V)
6 zringring 21005 . . . . 5 ring ∈ Ring
76a1i 11 . . . 4 (𝑁 ∈ ℕ0 → ℤring ∈ Ring)
81, 3, 4, 5, 7quslem 17485 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
9 eqid 2733 . . . . . 6 (RSpan‘ℤring) = (RSpan‘ℤring)
10 znzrhfo.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
11 eqid 2733 . . . . . 6 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))
129, 10, 11znbas 21083 . . . . 5 (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (Base‘𝑌))
13 znzrhfo.b . . . . 5 𝐵 = (Base‘𝑌)
1412, 13eqtr4di 2791 . . . 4 (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵)
15 foeq3 6800 . . . 4 ((ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
1614, 15syl 17 . . 3 (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
178, 16mpbid 231 . 2 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵)
18 znzrhfo.2 . . . 4 𝐿 = (ℤRHom‘𝑌)
199, 11, 10, 18znzrh2 21085 . . 3 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
20 foeq1 6798 . . 3 (𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) → (𝐿:ℤ–onto𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
2119, 20syl 17 . 2 (𝑁 ∈ ℕ0 → (𝐿:ℤ–onto𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
2217, 21mpbird 257 1 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  Vcvv 3475  {csn 4627  cmpt 5230  ontowfo 6538  cfv 6540  (class class class)co 7404  [cec 8697   / cqs 8698  0cn0 12468  cz 12554  Basecbs 17140   /s cqus 17447   ~QG cqg 18996  Ringcrg 20047  RSpancrsp 20772  ringczring 21002  ℤRHomczrh 21033  ℤ/nczn 21036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-tpos 8206  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-ec 8701  df-qs 8705  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-seq 13963  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-imas 17450  df-qus 17451  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mulg 18945  df-subg 18997  df-nsg 18998  df-eqg 18999  df-ghm 19084  df-cmn 19643  df-abl 19644  df-mgp 19980  df-ur 19997  df-ring 20049  df-cring 20050  df-oppr 20139  df-rnghom 20240  df-subrg 20349  df-lmod 20461  df-lss 20531  df-lsp 20571  df-sra 20773  df-rgmod 20774  df-lidl 20775  df-rsp 20776  df-2idl 20844  df-cnfld 20930  df-zring 21003  df-zrh 21037  df-zn 21040
This theorem is referenced by:  zncyg  21088  znf1o  21091  zzngim  21092  znfld  21100  znunit  21103  znrrg  21105  cygznlem2a  21107  cygznlem3  21109  dchrelbas4  26726  dchrzrhcl  26728  lgsdchrval  26837  lgsdchr  26838  rpvmasumlem  26970  dchrmusum2  26977  dchrvmasumlem3  26982  dchrisum0ff  26990  dchrisum0flblem1  26991  rpvmasum2  26995  dchrisum0re  26996  dchrisum0lem2a  27000  dirith  27012  znfermltl  32448
  Copyright terms: Public domain W3C validator