MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrhfo Structured version   Visualization version   GIF version

Theorem znzrhfo 20255
Description: The ring homomorphism is a surjection onto ℤ / 𝑛. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
znzrhfo.y 𝑌 = (ℤ/nℤ‘𝑁)
znzrhfo.b 𝐵 = (Base‘𝑌)
znzrhfo.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znzrhfo (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)

Proof of Theorem znzrhfo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2826 . . . 4 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
2 zringbas 20184 . . . . 5 ℤ = (Base‘ℤring)
32a1i 11 . . . 4 (𝑁 ∈ ℕ0 → ℤ = (Base‘ℤring))
4 eqid 2825 . . . 4 (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
5 ovexd 6939 . . . 4 (𝑁 ∈ ℕ0 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) ∈ V)
6 zringring 20181 . . . . 5 ring ∈ Ring
76a1i 11 . . . 4 (𝑁 ∈ ℕ0 → ℤring ∈ Ring)
81, 3, 4, 5, 7quslem 16556 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
9 eqid 2825 . . . . . 6 (RSpan‘ℤring) = (RSpan‘ℤring)
10 znzrhfo.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
11 eqid 2825 . . . . . 6 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))
129, 10, 11znbas 20251 . . . . 5 (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (Base‘𝑌))
13 znzrhfo.b . . . . 5 𝐵 = (Base‘𝑌)
1412, 13syl6eqr 2879 . . . 4 (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵)
15 foeq3 6351 . . . 4 ((ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
1614, 15syl 17 . . 3 (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
178, 16mpbid 224 . 2 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵)
18 znzrhfo.2 . . . 4 𝐿 = (ℤRHom‘𝑌)
199, 11, 10, 18znzrh2 20253 . . 3 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
20 foeq1 6349 . . 3 (𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) → (𝐿:ℤ–onto𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
2119, 20syl 17 . 2 (𝑁 ∈ ℕ0 → (𝐿:ℤ–onto𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
2217, 21mpbird 249 1 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166  Vcvv 3414  {csn 4397  cmpt 4952  ontowfo 6121  cfv 6123  (class class class)co 6905  [cec 8007   / cqs 8008  0cn0 11618  cz 11704  Basecbs 16222   /s cqus 16518   ~QG cqg 17941  Ringcrg 18901  RSpancrsp 19532  ringzring 20178  ℤRHomczrh 20208  ℤ/nczn 20211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-ec 8011  df-qs 8015  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-seq 13096  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-0g 16455  df-imas 16521  df-qus 16522  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mulg 17895  df-subg 17942  df-nsg 17943  df-eqg 17944  df-ghm 18009  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-oppr 18977  df-rnghom 19071  df-subrg 19134  df-lmod 19221  df-lss 19289  df-lsp 19331  df-sra 19533  df-rgmod 19534  df-lidl 19535  df-rsp 19536  df-2idl 19593  df-cnfld 20107  df-zring 20179  df-zrh 20212  df-zn 20215
This theorem is referenced by:  zncyg  20256  znf1o  20259  zzngim  20260  znfld  20268  znunit  20271  znrrg  20273  cygznlem2a  20275  cygznlem3  20277  dchrelbas4  25381  dchrzrhcl  25383  lgsdchrval  25492  lgsdchr  25493  rpvmasumlem  25589  dchrmusum2  25596  dchrvmasumlem3  25601  dchrisum0ff  25609  dchrisum0flblem1  25610  rpvmasum2  25614  dchrisum0re  25615  dchrisum0lem2a  25619  dirith  25631
  Copyright terms: Public domain W3C validator