Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndresdjuf1o Structured version   Visualization version   GIF version

Theorem 2ndresdjuf1o 30987
Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst 7941. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Hypotheses
Ref Expression
2ndresdju.u 𝑈 = 𝑥𝑋 ({𝑥} × 𝐶)
2ndresdju.a (𝜑𝐴𝑉)
2ndresdju.x (𝜑𝑋𝑊)
2ndresdju.1 (𝜑Disj 𝑥𝑋 𝐶)
2ndresdju.2 (𝜑 𝑥𝑋 𝐶 = 𝐴)
Assertion
Ref Expression
2ndresdjuf1o (𝜑 → (2nd𝑈):𝑈1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑈(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem 2ndresdjuf1o
StepHypRef Expression
1 2ndresdju.u . . 3 𝑈 = 𝑥𝑋 ({𝑥} × 𝐶)
2 2ndresdju.a . . 3 (𝜑𝐴𝑉)
3 2ndresdju.x . . 3 (𝜑𝑋𝑊)
4 2ndresdju.1 . . 3 (𝜑Disj 𝑥𝑋 𝐶)
5 2ndresdju.2 . . 3 (𝜑 𝑥𝑋 𝐶 = 𝐴)
61, 2, 3, 4, 52ndresdju 30986 . 2 (𝜑 → (2nd𝑈):𝑈1-1𝐴)
71iunfo 10295 . . 3 (2nd𝑈):𝑈onto 𝑥𝑋 𝐶
8 foeq3 6686 . . . 4 ( 𝑥𝑋 𝐶 = 𝐴 → ((2nd𝑈):𝑈onto 𝑥𝑋 𝐶 ↔ (2nd𝑈):𝑈onto𝐴))
98biimpa 477 . . 3 (( 𝑥𝑋 𝐶 = 𝐴 ∧ (2nd𝑈):𝑈onto 𝑥𝑋 𝐶) → (2nd𝑈):𝑈onto𝐴)
105, 7, 9sylancl 586 . 2 (𝜑 → (2nd𝑈):𝑈onto𝐴)
11 df-f1o 6440 . 2 ((2nd𝑈):𝑈1-1-onto𝐴 ↔ ((2nd𝑈):𝑈1-1𝐴 ∧ (2nd𝑈):𝑈onto𝐴))
126, 10, 11sylanbrc 583 1 (𝜑 → (2nd𝑈):𝑈1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {csn 4561   ciun 4924  Disj wdisj 5039   × cxp 5587  cres 5591  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432  2nd c2nd 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-2nd 7832
This theorem is referenced by:  gsumpart  31315
  Copyright terms: Public domain W3C validator