| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ndresdjuf1o | Structured version Visualization version GIF version | ||
| Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst 8080. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
| Ref | Expression |
|---|---|
| 2ndresdju.u | ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) |
| 2ndresdju.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2ndresdju.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| 2ndresdju.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) |
| 2ndresdju.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) |
| Ref | Expression |
|---|---|
| 2ndresdjuf1o | ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndresdju.u | . . 3 ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) | |
| 2 | 2ndresdju.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | 2ndresdju.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
| 4 | 2ndresdju.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) | |
| 5 | 2ndresdju.2 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | 2ndresdju 32573 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1→𝐴) |
| 7 | 1 | iunfo 10492 | . . 3 ⊢ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 |
| 8 | foeq3 6770 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 → ((2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 ↔ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
| 9 | 8 | biimpa 476 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶) → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
| 10 | 5, 7, 9 | sylancl 586 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
| 11 | df-f1o 6518 | . 2 ⊢ ((2nd ↾ 𝑈):𝑈–1-1-onto→𝐴 ↔ ((2nd ↾ 𝑈):𝑈–1-1→𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
| 12 | 6, 10, 11 | sylanbrc 583 | 1 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {csn 4589 ∪ ciun 4955 Disj wdisj 5074 × cxp 5636 ↾ cres 5640 –1-1→wf1 6508 –onto→wfo 6509 –1-1-onto→wf1o 6510 2nd c2nd 7967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-disj 5075 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-2nd 7969 |
| This theorem is referenced by: gsumpart 32997 |
| Copyright terms: Public domain | W3C validator |