Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndresdjuf1o Structured version   Visualization version   GIF version

Theorem 2ndresdjuf1o 32661
Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst 8127. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Hypotheses
Ref Expression
2ndresdju.u 𝑈 = 𝑥𝑋 ({𝑥} × 𝐶)
2ndresdju.a (𝜑𝐴𝑉)
2ndresdju.x (𝜑𝑋𝑊)
2ndresdju.1 (𝜑Disj 𝑥𝑋 𝐶)
2ndresdju.2 (𝜑 𝑥𝑋 𝐶 = 𝐴)
Assertion
Ref Expression
2ndresdjuf1o (𝜑 → (2nd𝑈):𝑈1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑈(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem 2ndresdjuf1o
StepHypRef Expression
1 2ndresdju.u . . 3 𝑈 = 𝑥𝑋 ({𝑥} × 𝐶)
2 2ndresdju.a . . 3 (𝜑𝐴𝑉)
3 2ndresdju.x . . 3 (𝜑𝑋𝑊)
4 2ndresdju.1 . . 3 (𝜑Disj 𝑥𝑋 𝐶)
5 2ndresdju.2 . . 3 (𝜑 𝑥𝑋 𝐶 = 𝐴)
61, 2, 3, 4, 52ndresdju 32660 . 2 (𝜑 → (2nd𝑈):𝑈1-1𝐴)
71iunfo 10580 . . 3 (2nd𝑈):𝑈onto 𝑥𝑋 𝐶
8 foeq3 6817 . . . 4 ( 𝑥𝑋 𝐶 = 𝐴 → ((2nd𝑈):𝑈onto 𝑥𝑋 𝐶 ↔ (2nd𝑈):𝑈onto𝐴))
98biimpa 476 . . 3 (( 𝑥𝑋 𝐶 = 𝐴 ∧ (2nd𝑈):𝑈onto 𝑥𝑋 𝐶) → (2nd𝑈):𝑈onto𝐴)
105, 7, 9sylancl 586 . 2 (𝜑 → (2nd𝑈):𝑈onto𝐴)
11 df-f1o 6567 . 2 ((2nd𝑈):𝑈1-1-onto𝐴 ↔ ((2nd𝑈):𝑈1-1𝐴 ∧ (2nd𝑈):𝑈onto𝐴))
126, 10, 11sylanbrc 583 1 (𝜑 → (2nd𝑈):𝑈1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {csn 4625   ciun 4990  Disj wdisj 5109   × cxp 5682  cres 5686  1-1wf1 6557  ontowfo 6558  1-1-ontowf1o 6559  2nd c2nd 8014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-2nd 8016
This theorem is referenced by:  gsumpart  33061
  Copyright terms: Public domain W3C validator