Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndresdjuf1o Structured version   Visualization version   GIF version

Theorem 2ndresdjuf1o 32668
Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst 8142. (Contributed by Thierry Arnoux, 23-Jun-2024.)
Hypotheses
Ref Expression
2ndresdju.u 𝑈 = 𝑥𝑋 ({𝑥} × 𝐶)
2ndresdju.a (𝜑𝐴𝑉)
2ndresdju.x (𝜑𝑋𝑊)
2ndresdju.1 (𝜑Disj 𝑥𝑋 𝐶)
2ndresdju.2 (𝜑 𝑥𝑋 𝐶 = 𝐴)
Assertion
Ref Expression
2ndresdjuf1o (𝜑 → (2nd𝑈):𝑈1-1-onto𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑈(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem 2ndresdjuf1o
StepHypRef Expression
1 2ndresdju.u . . 3 𝑈 = 𝑥𝑋 ({𝑥} × 𝐶)
2 2ndresdju.a . . 3 (𝜑𝐴𝑉)
3 2ndresdju.x . . 3 (𝜑𝑋𝑊)
4 2ndresdju.1 . . 3 (𝜑Disj 𝑥𝑋 𝐶)
5 2ndresdju.2 . . 3 (𝜑 𝑥𝑋 𝐶 = 𝐴)
61, 2, 3, 4, 52ndresdju 32667 . 2 (𝜑 → (2nd𝑈):𝑈1-1𝐴)
71iunfo 10608 . . 3 (2nd𝑈):𝑈onto 𝑥𝑋 𝐶
8 foeq3 6832 . . . 4 ( 𝑥𝑋 𝐶 = 𝐴 → ((2nd𝑈):𝑈onto 𝑥𝑋 𝐶 ↔ (2nd𝑈):𝑈onto𝐴))
98biimpa 476 . . 3 (( 𝑥𝑋 𝐶 = 𝐴 ∧ (2nd𝑈):𝑈onto 𝑥𝑋 𝐶) → (2nd𝑈):𝑈onto𝐴)
105, 7, 9sylancl 585 . 2 (𝜑 → (2nd𝑈):𝑈onto𝐴)
11 df-f1o 6580 . 2 ((2nd𝑈):𝑈1-1-onto𝐴 ↔ ((2nd𝑈):𝑈1-1𝐴 ∧ (2nd𝑈):𝑈onto𝐴))
126, 10, 11sylanbrc 582 1 (𝜑 → (2nd𝑈):𝑈1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {csn 4648   ciun 5015  Disj wdisj 5133   × cxp 5698  cres 5702  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572  2nd c2nd 8029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-2nd 8031
This theorem is referenced by:  gsumpart  33038
  Copyright terms: Public domain W3C validator