![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ndresdjuf1o | Structured version Visualization version GIF version |
Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst 8125. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
Ref | Expression |
---|---|
2ndresdju.u | ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) |
2ndresdju.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2ndresdju.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
2ndresdju.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) |
2ndresdju.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) |
Ref | Expression |
---|---|
2ndresdjuf1o | ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndresdju.u | . . 3 ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) | |
2 | 2ndresdju.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2ndresdju.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
4 | 2ndresdju.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) | |
5 | 2ndresdju.2 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) | |
6 | 1, 2, 3, 4, 5 | 2ndresdju 32666 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1→𝐴) |
7 | 1 | iunfo 10577 | . . 3 ⊢ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 |
8 | foeq3 6819 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 → ((2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 ↔ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
9 | 8 | biimpa 476 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶) → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
10 | 5, 7, 9 | sylancl 586 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
11 | df-f1o 6570 | . 2 ⊢ ((2nd ↾ 𝑈):𝑈–1-1-onto→𝐴 ↔ ((2nd ↾ 𝑈):𝑈–1-1→𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
12 | 6, 10, 11 | sylanbrc 583 | 1 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {csn 4631 ∪ ciun 4996 Disj wdisj 5115 × cxp 5687 ↾ cres 5691 –1-1→wf1 6560 –onto→wfo 6561 –1-1-onto→wf1o 6562 2nd c2nd 8012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-disj 5116 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-2nd 8014 |
This theorem is referenced by: gsumpart 33043 |
Copyright terms: Public domain | W3C validator |