| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ndresdjuf1o | Structured version Visualization version GIF version | ||
| Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst 8127. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
| Ref | Expression |
|---|---|
| 2ndresdju.u | ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) |
| 2ndresdju.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2ndresdju.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| 2ndresdju.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) |
| 2ndresdju.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) |
| Ref | Expression |
|---|---|
| 2ndresdjuf1o | ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndresdju.u | . . 3 ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) | |
| 2 | 2ndresdju.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | 2ndresdju.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
| 4 | 2ndresdju.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) | |
| 5 | 2ndresdju.2 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | 2ndresdju 32660 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1→𝐴) |
| 7 | 1 | iunfo 10580 | . . 3 ⊢ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 |
| 8 | foeq3 6817 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 → ((2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 ↔ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
| 9 | 8 | biimpa 476 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶) → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
| 10 | 5, 7, 9 | sylancl 586 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
| 11 | df-f1o 6567 | . 2 ⊢ ((2nd ↾ 𝑈):𝑈–1-1-onto→𝐴 ↔ ((2nd ↾ 𝑈):𝑈–1-1→𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
| 12 | 6, 10, 11 | sylanbrc 583 | 1 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4625 ∪ ciun 4990 Disj wdisj 5109 × cxp 5682 ↾ cres 5686 –1-1→wf1 6557 –onto→wfo 6558 –1-1-onto→wf1o 6559 2nd c2nd 8014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-disj 5110 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-2nd 8016 |
| This theorem is referenced by: gsumpart 33061 |
| Copyright terms: Public domain | W3C validator |