![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ndresdjuf1o | Structured version Visualization version GIF version |
Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst 8102. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
Ref | Expression |
---|---|
2ndresdju.u | ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) |
2ndresdju.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
2ndresdju.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
2ndresdju.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) |
2ndresdju.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) |
Ref | Expression |
---|---|
2ndresdjuf1o | ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2ndresdju.u | . . 3 ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) | |
2 | 2ndresdju.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2ndresdju.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
4 | 2ndresdju.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) | |
5 | 2ndresdju.2 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) | |
6 | 1, 2, 3, 4, 5 | 2ndresdju 32478 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1→𝐴) |
7 | 1 | iunfo 10560 | . . 3 ⊢ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 |
8 | foeq3 6803 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 → ((2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 ↔ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
9 | 8 | biimpa 475 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶) → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
10 | 5, 7, 9 | sylancl 584 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
11 | df-f1o 6549 | . 2 ⊢ ((2nd ↾ 𝑈):𝑈–1-1-onto→𝐴 ↔ ((2nd ↾ 𝑈):𝑈–1-1→𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
12 | 6, 10, 11 | sylanbrc 581 | 1 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {csn 4624 ∪ ciun 4991 Disj wdisj 5108 × cxp 5670 ↾ cres 5674 –1-1→wf1 6539 –onto→wfo 6540 –1-1-onto→wf1o 6541 2nd c2nd 7988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-disj 5109 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-2nd 7990 |
This theorem is referenced by: gsumpart 32812 |
Copyright terms: Public domain | W3C validator |