| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2ndresdjuf1o | Structured version Visualization version GIF version | ||
| Description: The 2nd function restricted to a disjoint union is a bijection. See also e.g. 2ndconst 8026. (Contributed by Thierry Arnoux, 23-Jun-2024.) |
| Ref | Expression |
|---|---|
| 2ndresdju.u | ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) |
| 2ndresdju.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 2ndresdju.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| 2ndresdju.1 | ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) |
| 2ndresdju.2 | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) |
| Ref | Expression |
|---|---|
| 2ndresdjuf1o | ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndresdju.u | . . 3 ⊢ 𝑈 = ∪ 𝑥 ∈ 𝑋 ({𝑥} × 𝐶) | |
| 2 | 2ndresdju.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | 2ndresdju.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
| 4 | 2ndresdju.1 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) | |
| 5 | 2ndresdju.2 | . . 3 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) | |
| 6 | 1, 2, 3, 4, 5 | 2ndresdju 32623 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1→𝐴) |
| 7 | 1 | iunfo 10425 | . . 3 ⊢ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 |
| 8 | foeq3 6728 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 → ((2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶 ↔ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
| 9 | 8 | biimpa 476 | . . 3 ⊢ ((∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→∪ 𝑥 ∈ 𝑋 𝐶) → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
| 10 | 5, 7, 9 | sylancl 586 | . 2 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–onto→𝐴) |
| 11 | df-f1o 6483 | . 2 ⊢ ((2nd ↾ 𝑈):𝑈–1-1-onto→𝐴 ↔ ((2nd ↾ 𝑈):𝑈–1-1→𝐴 ∧ (2nd ↾ 𝑈):𝑈–onto→𝐴)) | |
| 12 | 6, 10, 11 | sylanbrc 583 | 1 ⊢ (𝜑 → (2nd ↾ 𝑈):𝑈–1-1-onto→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4571 ∪ ciun 4936 Disj wdisj 5053 × cxp 5609 ↾ cres 5613 –1-1→wf1 6473 –onto→wfo 6474 –1-1-onto→wf1o 6475 2nd c2nd 7915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-disj 5054 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-2nd 7917 |
| This theorem is referenced by: gsumpart 33029 |
| Copyright terms: Public domain | W3C validator |