MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fifo Structured version   Visualization version   GIF version

Theorem fifo 9191
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
Hypothesis
Ref Expression
fifo.1 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
Assertion
Ref Expression
fifo (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem fifo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsni 4723 . . . . . 6 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
2 intex 5261 . . . . . 6 (𝑦 ≠ ∅ ↔ 𝑦 ∈ V)
31, 2sylib 217 . . . . 5 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ V)
43rgen 3074 . . . 4 𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) 𝑦 ∈ V
5 fifo.1 . . . . 5 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
65fnmpt 6573 . . . 4 (∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) 𝑦 ∈ V → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
74, 6mp1i 13 . . 3 (𝐴𝑉𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
8 dffn4 6694 . . 3 (𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)
97, 8sylib 217 . 2 (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)
10 elfi2 9173 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦))
115elrnmpt 5865 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦))
1211elv 3438 . . . . 5 (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦)
1310, 12bitr4di 289 . . . 4 (𝐴𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ 𝑥 ∈ ran 𝐹))
1413eqrdv 2736 . . 3 (𝐴𝑉 → (fi‘𝐴) = ran 𝐹)
15 foeq3 6686 . . 3 ((fi‘𝐴) = ran 𝐹 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹))
1614, 15syl 17 . 2 (𝐴𝑉 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹))
179, 16mpbird 256 1 (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cin 3886  c0 4256  𝒫 cpw 4533  {csn 4561   cint 4879  cmpt 5157  ran crn 5590   Fn wfn 6428  ontowfo 6431  cfv 6433  Fincfn 8733  ficfi 9169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-fo 6439  df-fv 6441  df-fi 9170
This theorem is referenced by:  inffien  9819  fictb  10001
  Copyright terms: Public domain W3C validator