MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fifo Structured version   Visualization version   GIF version

Theorem fifo 9121
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
Hypothesis
Ref Expression
fifo.1 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
Assertion
Ref Expression
fifo (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝐹(𝑦)

Proof of Theorem fifo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eldifsni 4720 . . . . . 6 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅)
2 intex 5256 . . . . . 6 (𝑦 ≠ ∅ ↔ 𝑦 ∈ V)
31, 2sylib 217 . . . . 5 (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ∈ V)
43rgen 3073 . . . 4 𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) 𝑦 ∈ V
5 fifo.1 . . . . 5 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ 𝑦)
65fnmpt 6557 . . . 4 (∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) 𝑦 ∈ V → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
74, 6mp1i 13 . . 3 (𝐴𝑉𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}))
8 dffn4 6678 . . 3 (𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)
97, 8sylib 217 . 2 (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)
10 elfi2 9103 . . . . 5 (𝐴𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦))
115elrnmpt 5854 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦))
1211elv 3428 . . . . 5 (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = 𝑦)
1310, 12bitr4di 288 . . . 4 (𝐴𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ 𝑥 ∈ ran 𝐹))
1413eqrdv 2736 . . 3 (𝐴𝑉 → (fi‘𝐴) = ran 𝐹)
15 foeq3 6670 . . 3 ((fi‘𝐴) = ran 𝐹 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹))
1614, 15syl 17 . 2 (𝐴𝑉 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹))
179, 16mpbird 256 1 (𝐴𝑉𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cin 3882  c0 4253  𝒫 cpw 4530  {csn 4558   cint 4876  cmpt 5153  ran crn 5581   Fn wfn 6413  ontowfo 6416  cfv 6418  Fincfn 8691  ficfi 9099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-fo 6424  df-fv 6426  df-fi 9100
This theorem is referenced by:  inffien  9750  fictb  9932
  Copyright terms: Public domain W3C validator