| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fifo | Structured version Visualization version GIF version | ||
| Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.) |
| Ref | Expression |
|---|---|
| fifo.1 | ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) |
| Ref | Expression |
|---|---|
| fifo | ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 4754 | . . . . . 6 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → 𝑦 ≠ ∅) | |
| 2 | intex 5299 | . . . . . 6 ⊢ (𝑦 ≠ ∅ ↔ ∩ 𝑦 ∈ V) | |
| 3 | 1, 2 | sylib 218 | . . . . 5 ⊢ (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) → ∩ 𝑦 ∈ V) |
| 4 | 3 | rgen 3046 | . . . 4 ⊢ ∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V |
| 5 | fifo.1 | . . . . 5 ⊢ 𝐹 = (𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↦ ∩ 𝑦) | |
| 6 | 5 | fnmpt 6658 | . . . 4 ⊢ (∀𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})∩ 𝑦 ∈ V → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
| 7 | 4, 6 | mp1i 13 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅})) |
| 8 | dffn4 6778 | . . 3 ⊢ (𝐹 Fn ((𝒫 𝐴 ∩ Fin) ∖ {∅}) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) | |
| 9 | 7, 8 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹) |
| 10 | elfi2 9365 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) | |
| 11 | 5 | elrnmpt 5922 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦)) |
| 12 | 11 | elv 3452 | . . . . 5 ⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑦 ∈ ((𝒫 𝐴 ∩ Fin) ∖ {∅})𝑥 = ∩ 𝑦) |
| 13 | 10, 12 | bitr4di 289 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (fi‘𝐴) ↔ 𝑥 ∈ ran 𝐹)) |
| 14 | 13 | eqrdv 2727 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (fi‘𝐴) = ran 𝐹) |
| 15 | foeq3 6770 | . . 3 ⊢ ((fi‘𝐴) = ran 𝐹 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴) ↔ 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→ran 𝐹)) |
| 17 | 9, 16 | mpbird 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐹:((𝒫 𝐴 ∩ Fin) ∖ {∅})–onto→(fi‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3447 ∖ cdif 3911 ∩ cin 3913 ∅c0 4296 𝒫 cpw 4563 {csn 4589 ∩ cint 4910 ↦ cmpt 5188 ran crn 5639 Fn wfn 6506 –onto→wfo 6509 ‘cfv 6511 Fincfn 8918 ficfi 9361 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-fo 6517 df-fv 6519 df-fi 9362 |
| This theorem is referenced by: inffien 10016 fictb 10197 |
| Copyright terms: Public domain | W3C validator |