![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtopcmplem | Structured version Visualization version GIF version |
Description: Lemma for qtopcmp 23211 and qtopconn 23212. (Contributed by Mario Carneiro, 24-Mar-2015.) |
Ref | Expression |
---|---|
qtopcmp.1 | β’ π = βͺ π½ |
qtopcmplem.1 | β’ (π½ β π΄ β π½ β Top) |
qtopcmplem.2 | β’ ((π½ β π΄ β§ πΉ:πβontoββͺ (π½ qTop πΉ) β§ πΉ β (π½ Cn (π½ qTop πΉ))) β (π½ qTop πΉ) β π΄) |
Ref | Expression |
---|---|
qtopcmplem | β’ ((π½ β π΄ β§ πΉ Fn π) β (π½ qTop πΉ) β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 β’ ((π½ β π΄ β§ πΉ Fn π) β π½ β π΄) | |
2 | simpr 485 | . . . 4 β’ ((π½ β π΄ β§ πΉ Fn π) β πΉ Fn π) | |
3 | dffn4 6811 | . . . 4 β’ (πΉ Fn π β πΉ:πβontoβran πΉ) | |
4 | 2, 3 | sylib 217 | . . 3 β’ ((π½ β π΄ β§ πΉ Fn π) β πΉ:πβontoβran πΉ) |
5 | qtopcmplem.1 | . . . . . 6 β’ (π½ β π΄ β π½ β Top) | |
6 | qtopcmp.1 | . . . . . . 7 β’ π = βͺ π½ | |
7 | 6 | qtopuni 23205 | . . . . . 6 β’ ((π½ β Top β§ πΉ:πβontoβran πΉ) β ran πΉ = βͺ (π½ qTop πΉ)) |
8 | 5, 7 | sylan 580 | . . . . 5 β’ ((π½ β π΄ β§ πΉ:πβontoβran πΉ) β ran πΉ = βͺ (π½ qTop πΉ)) |
9 | 3, 8 | sylan2b 594 | . . . 4 β’ ((π½ β π΄ β§ πΉ Fn π) β ran πΉ = βͺ (π½ qTop πΉ)) |
10 | foeq3 6803 | . . . 4 β’ (ran πΉ = βͺ (π½ qTop πΉ) β (πΉ:πβontoβran πΉ β πΉ:πβontoββͺ (π½ qTop πΉ))) | |
11 | 9, 10 | syl 17 | . . 3 β’ ((π½ β π΄ β§ πΉ Fn π) β (πΉ:πβontoβran πΉ β πΉ:πβontoββͺ (π½ qTop πΉ))) |
12 | 4, 11 | mpbid 231 | . 2 β’ ((π½ β π΄ β§ πΉ Fn π) β πΉ:πβontoββͺ (π½ qTop πΉ)) |
13 | 6 | toptopon 22418 | . . . 4 β’ (π½ β Top β π½ β (TopOnβπ)) |
14 | 5, 13 | sylib 217 | . . 3 β’ (π½ β π΄ β π½ β (TopOnβπ)) |
15 | qtopid 23208 | . . 3 β’ ((π½ β (TopOnβπ) β§ πΉ Fn π) β πΉ β (π½ Cn (π½ qTop πΉ))) | |
16 | 14, 15 | sylan 580 | . 2 β’ ((π½ β π΄ β§ πΉ Fn π) β πΉ β (π½ Cn (π½ qTop πΉ))) |
17 | qtopcmplem.2 | . 2 β’ ((π½ β π΄ β§ πΉ:πβontoββͺ (π½ qTop πΉ) β§ πΉ β (π½ Cn (π½ qTop πΉ))) β (π½ qTop πΉ) β π΄) | |
18 | 1, 12, 16, 17 | syl3anc 1371 | 1 β’ ((π½ β π΄ β§ πΉ Fn π) β (π½ qTop πΉ) β π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βͺ cuni 4908 ran crn 5677 Fn wfn 6538 βontoβwfo 6541 βcfv 6543 (class class class)co 7408 qTop cqtop 17448 Topctop 22394 TopOnctopon 22411 Cn ccn 22727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-map 8821 df-qtop 17452 df-top 22395 df-topon 22412 df-cn 22730 |
This theorem is referenced by: qtopcmp 23211 qtopconn 23212 qtoppconn 34222 |
Copyright terms: Public domain | W3C validator |