MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmplem Structured version   Visualization version   GIF version

Theorem qtopcmplem 23650
Description: Lemma for qtopcmp 23651 and qtopconn 23652. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopcmp.1 𝑋 = 𝐽
qtopcmplem.1 (𝐽𝐴𝐽 ∈ Top)
qtopcmplem.2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
Assertion
Ref Expression
qtopcmplem ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)

Proof of Theorem qtopcmplem
StepHypRef Expression
1 simpl 482 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐽𝐴)
2 simpr 484 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 Fn 𝑋)
3 dffn4 6801 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
42, 3sylib 218 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto→ran 𝐹)
5 qtopcmplem.1 . . . . . 6 (𝐽𝐴𝐽 ∈ Top)
6 qtopcmp.1 . . . . . . 7 𝑋 = 𝐽
76qtopuni 23645 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
85, 7sylan 580 . . . . 5 ((𝐽𝐴𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
93, 8sylan2b 594 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → ran 𝐹 = (𝐽 qTop 𝐹))
10 foeq3 6793 . . . 4 (ran 𝐹 = (𝐽 qTop 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
119, 10syl 17 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
124, 11mpbid 232 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto (𝐽 qTop 𝐹))
136toptopon 22860 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
145, 13sylib 218 . . 3 (𝐽𝐴𝐽 ∈ (TopOn‘𝑋))
15 qtopid 23648 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
1614, 15sylan 580 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
17 qtopcmplem.2 . 2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
181, 12, 16, 17syl3anc 1373 1 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   cuni 4888  ran crn 5660   Fn wfn 6531  ontowfo 6534  cfv 6536  (class class class)co 7410   qTop cqtop 17522  Topctop 22836  TopOnctopon 22853   Cn ccn 23167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-qtop 17526  df-top 22837  df-topon 22854  df-cn 23170
This theorem is referenced by:  qtopcmp  23651  qtopconn  23652  qtoppconn  35263
  Copyright terms: Public domain W3C validator