MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmplem Structured version   Visualization version   GIF version

Theorem qtopcmplem 23731
Description: Lemma for qtopcmp 23732 and qtopconn 23733. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopcmp.1 𝑋 = 𝐽
qtopcmplem.1 (𝐽𝐴𝐽 ∈ Top)
qtopcmplem.2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
Assertion
Ref Expression
qtopcmplem ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)

Proof of Theorem qtopcmplem
StepHypRef Expression
1 simpl 482 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐽𝐴)
2 simpr 484 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 Fn 𝑋)
3 dffn4 6827 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
42, 3sylib 218 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto→ran 𝐹)
5 qtopcmplem.1 . . . . . 6 (𝐽𝐴𝐽 ∈ Top)
6 qtopcmp.1 . . . . . . 7 𝑋 = 𝐽
76qtopuni 23726 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
85, 7sylan 580 . . . . 5 ((𝐽𝐴𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
93, 8sylan2b 594 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → ran 𝐹 = (𝐽 qTop 𝐹))
10 foeq3 6819 . . . 4 (ran 𝐹 = (𝐽 qTop 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
119, 10syl 17 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
124, 11mpbid 232 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto (𝐽 qTop 𝐹))
136toptopon 22939 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
145, 13sylib 218 . . 3 (𝐽𝐴𝐽 ∈ (TopOn‘𝑋))
15 qtopid 23729 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
1614, 15sylan 580 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
17 qtopcmplem.2 . 2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
181, 12, 16, 17syl3anc 1370 1 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   cuni 4912  ran crn 5690   Fn wfn 6558  ontowfo 6561  cfv 6563  (class class class)co 7431   qTop cqtop 17550  Topctop 22915  TopOnctopon 22932   Cn ccn 23248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-qtop 17554  df-top 22916  df-topon 22933  df-cn 23251
This theorem is referenced by:  qtopcmp  23732  qtopconn  23733  qtoppconn  35221
  Copyright terms: Public domain W3C validator