MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmplem Structured version   Visualization version   GIF version

Theorem qtopcmplem 23210
Description: Lemma for qtopcmp 23211 and qtopconn 23212. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopcmp.1 𝑋 = βˆͺ 𝐽
qtopcmplem.1 (𝐽 ∈ 𝐴 β†’ 𝐽 ∈ Top)
qtopcmplem.2 ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–ontoβ†’βˆͺ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) β†’ (𝐽 qTop 𝐹) ∈ 𝐴)
Assertion
Ref Expression
qtopcmplem ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) β†’ (𝐽 qTop 𝐹) ∈ 𝐴)

Proof of Theorem qtopcmplem
StepHypRef Expression
1 simpl 483 . 2 ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) β†’ 𝐽 ∈ 𝐴)
2 simpr 485 . . . 4 ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) β†’ 𝐹 Fn 𝑋)
3 dffn4 6811 . . . 4 (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–ontoβ†’ran 𝐹)
42, 3sylib 217 . . 3 ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) β†’ 𝐹:𝑋–ontoβ†’ran 𝐹)
5 qtopcmplem.1 . . . . . 6 (𝐽 ∈ 𝐴 β†’ 𝐽 ∈ Top)
6 qtopcmp.1 . . . . . . 7 𝑋 = βˆͺ 𝐽
76qtopuni 23205 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋–ontoβ†’ran 𝐹) β†’ ran 𝐹 = βˆͺ (𝐽 qTop 𝐹))
85, 7sylan 580 . . . . 5 ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–ontoβ†’ran 𝐹) β†’ ran 𝐹 = βˆͺ (𝐽 qTop 𝐹))
93, 8sylan2b 594 . . . 4 ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) β†’ ran 𝐹 = βˆͺ (𝐽 qTop 𝐹))
10 foeq3 6803 . . . 4 (ran 𝐹 = βˆͺ (𝐽 qTop 𝐹) β†’ (𝐹:𝑋–ontoβ†’ran 𝐹 ↔ 𝐹:𝑋–ontoβ†’βˆͺ (𝐽 qTop 𝐹)))
119, 10syl 17 . . 3 ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) β†’ (𝐹:𝑋–ontoβ†’ran 𝐹 ↔ 𝐹:𝑋–ontoβ†’βˆͺ (𝐽 qTop 𝐹)))
124, 11mpbid 231 . 2 ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) β†’ 𝐹:𝑋–ontoβ†’βˆͺ (𝐽 qTop 𝐹))
136toptopon 22418 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
145, 13sylib 217 . . 3 (𝐽 ∈ 𝐴 β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
15 qtopid 23208 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐹 Fn 𝑋) β†’ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
1614, 15sylan 580 . 2 ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) β†’ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
17 qtopcmplem.2 . 2 ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–ontoβ†’βˆͺ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) β†’ (𝐽 qTop 𝐹) ∈ 𝐴)
181, 12, 16, 17syl3anc 1371 1 ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) β†’ (𝐽 qTop 𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆͺ cuni 4908  ran crn 5677   Fn wfn 6538  β€“ontoβ†’wfo 6541  β€˜cfv 6543  (class class class)co 7408   qTop cqtop 17448  Topctop 22394  TopOnctopon 22411   Cn ccn 22727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-map 8821  df-qtop 17452  df-top 22395  df-topon 22412  df-cn 22730
This theorem is referenced by:  qtopcmp  23211  qtopconn  23212  qtoppconn  34222
  Copyright terms: Public domain W3C validator