Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > qtopcmplem | Structured version Visualization version GIF version |
Description: Lemma for qtopcmp 22840 and qtopconn 22841. (Contributed by Mario Carneiro, 24-Mar-2015.) |
Ref | Expression |
---|---|
qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
qtopcmplem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
qtopcmplem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴) |
Ref | Expression |
---|---|
qtopcmplem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐽 ∈ 𝐴) | |
2 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹 Fn 𝑋) | |
3 | dffn4 6690 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
5 | qtopcmplem.1 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
6 | qtopcmp.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | qtopuni 22834 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→ran 𝐹) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) |
8 | 5, 7 | sylan 579 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→ran 𝐹) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) |
9 | 3, 8 | sylan2b 593 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) |
10 | foeq3 6682 | . . . 4 ⊢ (ran 𝐹 = ∪ (𝐽 qTop 𝐹) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹))) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹))) |
12 | 4, 11 | mpbid 231 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹)) |
13 | 6 | toptopon 22047 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
14 | 5, 13 | sylib 217 | . . 3 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ (TopOn‘𝑋)) |
15 | qtopid 22837 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | |
16 | 14, 15 | sylan 579 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
17 | qtopcmplem.2 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴) | |
18 | 1, 12, 16, 17 | syl3anc 1369 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∪ cuni 4844 ran crn 5589 Fn wfn 6425 –onto→wfo 6428 ‘cfv 6430 (class class class)co 7268 qTop cqtop 17195 Topctop 22023 TopOnctopon 22040 Cn ccn 22356 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-qtop 17199 df-top 22024 df-topon 22041 df-cn 22359 |
This theorem is referenced by: qtopcmp 22840 qtopconn 22841 qtoppconn 33177 |
Copyright terms: Public domain | W3C validator |