MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmplem Structured version   Visualization version   GIF version

Theorem qtopcmplem 23592
Description: Lemma for qtopcmp 23593 and qtopconn 23594. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopcmp.1 𝑋 = 𝐽
qtopcmplem.1 (𝐽𝐴𝐽 ∈ Top)
qtopcmplem.2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
Assertion
Ref Expression
qtopcmplem ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)

Proof of Theorem qtopcmplem
StepHypRef Expression
1 simpl 482 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐽𝐴)
2 simpr 484 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 Fn 𝑋)
3 dffn4 6742 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
42, 3sylib 218 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto→ran 𝐹)
5 qtopcmplem.1 . . . . . 6 (𝐽𝐴𝐽 ∈ Top)
6 qtopcmp.1 . . . . . . 7 𝑋 = 𝐽
76qtopuni 23587 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
85, 7sylan 580 . . . . 5 ((𝐽𝐴𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
93, 8sylan2b 594 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → ran 𝐹 = (𝐽 qTop 𝐹))
10 foeq3 6734 . . . 4 (ran 𝐹 = (𝐽 qTop 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
119, 10syl 17 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
124, 11mpbid 232 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto (𝐽 qTop 𝐹))
136toptopon 22802 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
145, 13sylib 218 . . 3 (𝐽𝐴𝐽 ∈ (TopOn‘𝑋))
15 qtopid 23590 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
1614, 15sylan 580 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
17 qtopcmplem.2 . 2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
181, 12, 16, 17syl3anc 1373 1 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   cuni 4858  ran crn 5620   Fn wfn 6477  ontowfo 6480  cfv 6482  (class class class)co 7349   qTop cqtop 17407  Topctop 22778  TopOnctopon 22795   Cn ccn 23109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-qtop 17411  df-top 22779  df-topon 22796  df-cn 23112
This theorem is referenced by:  qtopcmp  23593  qtopconn  23594  qtoppconn  35219
  Copyright terms: Public domain W3C validator