![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qtopcmplem | Structured version Visualization version GIF version |
Description: Lemma for qtopcmp 23599 and qtopconn 23600. (Contributed by Mario Carneiro, 24-Mar-2015.) |
Ref | Expression |
---|---|
qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
qtopcmplem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
qtopcmplem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴) |
Ref | Expression |
---|---|
qtopcmplem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐽 ∈ 𝐴) | |
2 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹 Fn 𝑋) | |
3 | dffn4 6811 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
4 | 2, 3 | sylib 217 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
5 | qtopcmplem.1 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
6 | qtopcmp.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
7 | 6 | qtopuni 23593 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→ran 𝐹) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) |
8 | 5, 7 | sylan 579 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→ran 𝐹) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) |
9 | 3, 8 | sylan2b 593 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) |
10 | foeq3 6803 | . . . 4 ⊢ (ran 𝐹 = ∪ (𝐽 qTop 𝐹) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹))) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹))) |
12 | 4, 11 | mpbid 231 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹)) |
13 | 6 | toptopon 22806 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
14 | 5, 13 | sylib 217 | . . 3 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ (TopOn‘𝑋)) |
15 | qtopid 23596 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | |
16 | 14, 15 | sylan 579 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
17 | qtopcmplem.2 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴) | |
18 | 1, 12, 16, 17 | syl3anc 1369 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∪ cuni 4903 ran crn 5673 Fn wfn 6537 –onto→wfo 6540 ‘cfv 6542 (class class class)co 7414 qTop cqtop 17476 Topctop 22782 TopOnctopon 22799 Cn ccn 23115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8838 df-qtop 17480 df-top 22783 df-topon 22800 df-cn 23118 |
This theorem is referenced by: qtopcmp 23599 qtopconn 23600 qtoppconn 34782 |
Copyright terms: Public domain | W3C validator |