MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmplem Structured version   Visualization version   GIF version

Theorem qtopcmplem 23627
Description: Lemma for qtopcmp 23628 and qtopconn 23629. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopcmp.1 𝑋 = 𝐽
qtopcmplem.1 (𝐽𝐴𝐽 ∈ Top)
qtopcmplem.2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
Assertion
Ref Expression
qtopcmplem ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)

Proof of Theorem qtopcmplem
StepHypRef Expression
1 simpl 482 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐽𝐴)
2 simpr 484 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 Fn 𝑋)
3 dffn4 6760 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
42, 3sylib 218 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto→ran 𝐹)
5 qtopcmplem.1 . . . . . 6 (𝐽𝐴𝐽 ∈ Top)
6 qtopcmp.1 . . . . . . 7 𝑋 = 𝐽
76qtopuni 23622 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
85, 7sylan 580 . . . . 5 ((𝐽𝐴𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
93, 8sylan2b 594 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → ran 𝐹 = (𝐽 qTop 𝐹))
10 foeq3 6752 . . . 4 (ran 𝐹 = (𝐽 qTop 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
119, 10syl 17 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
124, 11mpbid 232 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto (𝐽 qTop 𝐹))
136toptopon 22837 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
145, 13sylib 218 . . 3 (𝐽𝐴𝐽 ∈ (TopOn‘𝑋))
15 qtopid 23625 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
1614, 15sylan 580 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
17 qtopcmplem.2 . 2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
181, 12, 16, 17syl3anc 1373 1 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   cuni 4867  ran crn 5632   Fn wfn 6494  ontowfo 6497  cfv 6499  (class class class)co 7369   qTop cqtop 17442  Topctop 22813  TopOnctopon 22830   Cn ccn 23144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-qtop 17446  df-top 22814  df-topon 22831  df-cn 23147
This theorem is referenced by:  qtopcmp  23628  qtopconn  23629  qtoppconn  35216
  Copyright terms: Public domain W3C validator