| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qtopcmplem | Structured version Visualization version GIF version | ||
| Description: Lemma for qtopcmp 23651 and qtopconn 23652. (Contributed by Mario Carneiro, 24-Mar-2015.) |
| Ref | Expression |
|---|---|
| qtopcmp.1 | ⊢ 𝑋 = ∪ 𝐽 |
| qtopcmplem.1 | ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) |
| qtopcmplem.2 | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴) |
| Ref | Expression |
|---|---|
| qtopcmplem | ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐽 ∈ 𝐴) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹 Fn 𝑋) | |
| 3 | dffn4 6801 | . . . 4 ⊢ (𝐹 Fn 𝑋 ↔ 𝐹:𝑋–onto→ran 𝐹) | |
| 4 | 2, 3 | sylib 218 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→ran 𝐹) |
| 5 | qtopcmplem.1 | . . . . . 6 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ Top) | |
| 6 | qtopcmp.1 | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
| 7 | 6 | qtopuni 23645 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝐹:𝑋–onto→ran 𝐹) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) |
| 8 | 5, 7 | sylan 580 | . . . . 5 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→ran 𝐹) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) |
| 9 | 3, 8 | sylan2b 594 | . . . 4 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → ran 𝐹 = ∪ (𝐽 qTop 𝐹)) |
| 10 | foeq3 6793 | . . . 4 ⊢ (ran 𝐹 = ∪ (𝐽 qTop 𝐹) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹))) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐹:𝑋–onto→ran 𝐹 ↔ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹))) |
| 12 | 4, 11 | mpbid 232 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹)) |
| 13 | 6 | toptopon 22860 | . . . 4 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋)) |
| 14 | 5, 13 | sylib 218 | . . 3 ⊢ (𝐽 ∈ 𝐴 → 𝐽 ∈ (TopOn‘𝑋)) |
| 15 | qtopid 23648 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) | |
| 16 | 14, 15 | sylan 580 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) |
| 17 | qtopcmplem.2 | . 2 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹:𝑋–onto→∪ (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴) | |
| 18 | 1, 12, 16, 17 | syl3anc 1373 | 1 ⊢ ((𝐽 ∈ 𝐴 ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∪ cuni 4888 ran crn 5660 Fn wfn 6531 –onto→wfo 6534 ‘cfv 6536 (class class class)co 7410 qTop cqtop 17522 Topctop 22836 TopOnctopon 22853 Cn ccn 23167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-qtop 17526 df-top 22837 df-topon 22854 df-cn 23170 |
| This theorem is referenced by: qtopcmp 23651 qtopconn 23652 qtoppconn 35263 |
| Copyright terms: Public domain | W3C validator |