MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcmplem Structured version   Visualization version   GIF version

Theorem qtopcmplem 23622
Description: Lemma for qtopcmp 23623 and qtopconn 23624. (Contributed by Mario Carneiro, 24-Mar-2015.)
Hypotheses
Ref Expression
qtopcmp.1 𝑋 = 𝐽
qtopcmplem.1 (𝐽𝐴𝐽 ∈ Top)
qtopcmplem.2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
Assertion
Ref Expression
qtopcmplem ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)

Proof of Theorem qtopcmplem
StepHypRef Expression
1 simpl 482 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐽𝐴)
2 simpr 484 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 Fn 𝑋)
3 dffn4 6741 . . . 4 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
42, 3sylib 218 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto→ran 𝐹)
5 qtopcmplem.1 . . . . . 6 (𝐽𝐴𝐽 ∈ Top)
6 qtopcmp.1 . . . . . . 7 𝑋 = 𝐽
76qtopuni 23617 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
85, 7sylan 580 . . . . 5 ((𝐽𝐴𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
93, 8sylan2b 594 . . . 4 ((𝐽𝐴𝐹 Fn 𝑋) → ran 𝐹 = (𝐽 qTop 𝐹))
10 foeq3 6733 . . . 4 (ran 𝐹 = (𝐽 qTop 𝐹) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
119, 10syl 17 . . 3 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐹:𝑋onto→ran 𝐹𝐹:𝑋onto (𝐽 qTop 𝐹)))
124, 11mpbid 232 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹:𝑋onto (𝐽 qTop 𝐹))
136toptopon 22832 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
145, 13sylib 218 . . 3 (𝐽𝐴𝐽 ∈ (TopOn‘𝑋))
15 qtopid 23620 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
1614, 15sylan 580 . 2 ((𝐽𝐴𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
17 qtopcmplem.2 . 2 ((𝐽𝐴𝐹:𝑋onto (𝐽 qTop 𝐹) ∧ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ 𝐴)
181, 12, 16, 17syl3anc 1373 1 ((𝐽𝐴𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   cuni 4856  ran crn 5615   Fn wfn 6476  ontowfo 6479  cfv 6481  (class class class)co 7346   qTop cqtop 17407  Topctop 22808  TopOnctopon 22825   Cn ccn 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-qtop 17411  df-top 22809  df-topon 22826  df-cn 23142
This theorem is referenced by:  qtopcmp  23623  qtopconn  23624  qtoppconn  35280
  Copyright terms: Public domain W3C validator