![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rneqdmfinf1o | Structured version Visualization version GIF version |
Description: Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.) |
Ref | Expression |
---|---|
rneqdmfinf1o | ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn4 6811 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴–onto→ran 𝐹) |
3 | 2 | 3ad2ant2 1131 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–onto→ran 𝐹) |
4 | foeq3 6803 | . . . 4 ⊢ (ran 𝐹 = 𝐴 → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐴)) | |
5 | 4 | 3ad2ant3 1132 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐴)) |
6 | 3, 5 | mpbid 231 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–onto→𝐴) |
7 | enrefg 9005 | . . 3 ⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | |
8 | 7 | 3ad2ant1 1130 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ≈ 𝐴) |
9 | simp1 1133 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ∈ Fin) | |
10 | fofinf1o 9365 | . 2 ⊢ ((𝐹:𝐴–onto→𝐴 ∧ 𝐴 ≈ 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹:𝐴–1-1-onto→𝐴) | |
11 | 6, 8, 9, 10 | syl3anc 1368 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 class class class wbr 5144 ran crn 5674 Fn wfn 6539 –onto→wfo 6542 –1-1-onto→wf1o 6543 ≈ cen 8961 Fincfn 8964 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7867 df-1o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 |
This theorem is referenced by: gausslemma2dlem1 27390 |
Copyright terms: Public domain | W3C validator |