MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rneqdmfinf1o Structured version   Visualization version   GIF version

Theorem rneqdmfinf1o 9217
Description: Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
rneqdmfinf1o ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴1-1-onto𝐴)

Proof of Theorem rneqdmfinf1o
StepHypRef Expression
1 dffn4 6741 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
21biimpi 216 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
323ad2ant2 1134 . . 3 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴onto→ran 𝐹)
4 foeq3 6733 . . . 4 (ran 𝐹 = 𝐴 → (𝐹:𝐴onto→ran 𝐹𝐹:𝐴onto𝐴))
543ad2ant3 1135 . . 3 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → (𝐹:𝐴onto→ran 𝐹𝐹:𝐴onto𝐴))
63, 5mpbid 232 . 2 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴onto𝐴)
7 enrefg 8906 . . 3 (𝐴 ∈ Fin → 𝐴𝐴)
873ad2ant1 1133 . 2 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴𝐴)
9 simp1 1136 . 2 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ∈ Fin)
10 fofinf1o 9216 . 2 ((𝐹:𝐴onto𝐴𝐴𝐴𝐴 ∈ Fin) → 𝐹:𝐴1-1-onto𝐴)
116, 8, 9, 10syl3anc 1373 1 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  ran crn 5615   Fn wfn 6476  ontowfo 6479  1-1-ontowf1o 6480  cen 8866  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-om 7797  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873
This theorem is referenced by:  gausslemma2dlem1  27304
  Copyright terms: Public domain W3C validator