![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rneqdmfinf1o | Structured version Visualization version GIF version |
Description: Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.) |
Ref | Expression |
---|---|
rneqdmfinf1o | ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffn4 6739 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
2 | 1 | biimpi 215 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴–onto→ran 𝐹) |
3 | 2 | 3ad2ant2 1133 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–onto→ran 𝐹) |
4 | foeq3 6731 | . . . 4 ⊢ (ran 𝐹 = 𝐴 → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐴)) | |
5 | 4 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐴)) |
6 | 3, 5 | mpbid 231 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–onto→𝐴) |
7 | enrefg 8837 | . . 3 ⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | |
8 | 7 | 3ad2ant1 1132 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ≈ 𝐴) |
9 | simp1 1135 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ∈ Fin) | |
10 | fofinf1o 9184 | . 2 ⊢ ((𝐹:𝐴–onto→𝐴 ∧ 𝐴 ≈ 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹:𝐴–1-1-onto→𝐴) | |
11 | 6, 8, 9, 10 | syl3anc 1370 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5089 ran crn 5615 Fn wfn 6468 –onto→wfo 6471 –1-1-onto→wf1o 6472 ≈ cen 8793 Fincfn 8796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-om 7773 df-1o 8359 df-er 8561 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 |
This theorem is referenced by: gausslemma2dlem1 26612 |
Copyright terms: Public domain | W3C validator |