| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rneqdmfinf1o | Structured version Visualization version GIF version | ||
| Description: Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| rneqdmfinf1o | ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn4 6741 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 2 | 1 | biimpi 216 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴–onto→ran 𝐹) |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–onto→ran 𝐹) |
| 4 | foeq3 6733 | . . . 4 ⊢ (ran 𝐹 = 𝐴 → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐴)) | |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐴)) |
| 6 | 3, 5 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–onto→𝐴) |
| 7 | enrefg 8906 | . . 3 ⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | |
| 8 | 7 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ≈ 𝐴) |
| 9 | simp1 1136 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ∈ Fin) | |
| 10 | fofinf1o 9216 | . 2 ⊢ ((𝐹:𝐴–onto→𝐴 ∧ 𝐴 ≈ 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹:𝐴–1-1-onto→𝐴) | |
| 11 | 6, 8, 9, 10 | syl3anc 1373 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ran crn 5615 Fn wfn 6476 –onto→wfo 6479 –1-1-onto→wf1o 6480 ≈ cen 8866 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 |
| This theorem is referenced by: gausslemma2dlem1 27304 |
| Copyright terms: Public domain | W3C validator |