| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rneqdmfinf1o | Structured version Visualization version GIF version | ||
| Description: Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.) |
| Ref | Expression |
|---|---|
| rneqdmfinf1o | ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffn4 6778 | . . . . 5 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 2 | 1 | biimpi 216 | . . . 4 ⊢ (𝐹 Fn 𝐴 → 𝐹:𝐴–onto→ran 𝐹) |
| 3 | 2 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–onto→ran 𝐹) |
| 4 | foeq3 6770 | . . . 4 ⊢ (ran 𝐹 = 𝐴 → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐴)) | |
| 5 | 4 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → (𝐹:𝐴–onto→ran 𝐹 ↔ 𝐹:𝐴–onto→𝐴)) |
| 6 | 3, 5 | mpbid 232 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–onto→𝐴) |
| 7 | enrefg 8955 | . . 3 ⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | |
| 8 | 7 | 3ad2ant1 1133 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ≈ 𝐴) |
| 9 | simp1 1136 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ∈ Fin) | |
| 10 | fofinf1o 9283 | . 2 ⊢ ((𝐹:𝐴–onto→𝐴 ∧ 𝐴 ≈ 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹:𝐴–1-1-onto→𝐴) | |
| 11 | 6, 8, 9, 10 | syl3anc 1373 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ran crn 5639 Fn wfn 6506 –onto→wfo 6509 –1-1-onto→wf1o 6510 ≈ cen 8915 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 |
| This theorem is referenced by: gausslemma2dlem1 27277 |
| Copyright terms: Public domain | W3C validator |