MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rneqdmfinf1o Structured version   Visualization version   GIF version

Theorem rneqdmfinf1o 9284
Description: Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.)
Assertion
Ref Expression
rneqdmfinf1o ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴1-1-onto𝐴)

Proof of Theorem rneqdmfinf1o
StepHypRef Expression
1 dffn4 6778 . . . . 5 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
21biimpi 216 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
323ad2ant2 1134 . . 3 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴onto→ran 𝐹)
4 foeq3 6770 . . . 4 (ran 𝐹 = 𝐴 → (𝐹:𝐴onto→ran 𝐹𝐹:𝐴onto𝐴))
543ad2ant3 1135 . . 3 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → (𝐹:𝐴onto→ran 𝐹𝐹:𝐴onto𝐴))
63, 5mpbid 232 . 2 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴onto𝐴)
7 enrefg 8955 . . 3 (𝐴 ∈ Fin → 𝐴𝐴)
873ad2ant1 1133 . 2 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴𝐴)
9 simp1 1136 . 2 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐴 ∈ Fin)
10 fofinf1o 9283 . 2 ((𝐹:𝐴onto𝐴𝐴𝐴𝐴 ∈ Fin) → 𝐹:𝐴1-1-onto𝐴)
116, 8, 9, 10syl3anc 1373 1 ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴1-1-onto𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  ran crn 5639   Fn wfn 6506  ontowfo 6509  1-1-ontowf1o 6510  cen 8915  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922
This theorem is referenced by:  gausslemma2dlem1  27277
  Copyright terms: Public domain W3C validator