| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znnen | Structured version Visualization version GIF version | ||
| Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
| Ref | Expression |
|---|---|
| znnen | ⊢ ℤ ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9536 | . . . . . 6 ⊢ ω ∈ On | |
| 2 | nnenom 13887 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 3 | 2 | ensymi 8926 | . . . . . 6 ⊢ ω ≈ ℕ |
| 4 | isnumi 9839 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
| 5 | 1, 3, 4 | mp2an 692 | . . . . 5 ⊢ ℕ ∈ dom card |
| 6 | xpnum 9844 | . . . . 5 ⊢ ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . 4 ⊢ (ℕ × ℕ) ∈ dom card |
| 8 | subf 11362 | . . . . . . 7 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 9 | ffun 6654 | . . . . . . 7 ⊢ ( − :(ℂ × ℂ)⟶ℂ → Fun − ) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun − |
| 11 | nnsscn 12130 | . . . . . . . 8 ⊢ ℕ ⊆ ℂ | |
| 12 | xpss12 5629 | . . . . . . . 8 ⊢ ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ)) | |
| 13 | 11, 11, 12 | mp2an 692 | . . . . . . 7 ⊢ (ℕ × ℕ) ⊆ (ℂ × ℂ) |
| 14 | 8 | fdmi 6662 | . . . . . . 7 ⊢ dom − = (ℂ × ℂ) |
| 15 | 13, 14 | sseqtrri 3979 | . . . . . 6 ⊢ (ℕ × ℕ) ⊆ dom − |
| 16 | fores 6745 | . . . . . 6 ⊢ ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) | |
| 17 | 10, 15, 16 | mp2an 692 | . . . . 5 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)) |
| 18 | dfz2 12487 | . . . . . 6 ⊢ ℤ = ( − “ (ℕ × ℕ)) | |
| 19 | foeq3 6733 | . . . . . 6 ⊢ (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) |
| 21 | 17, 20 | mpbir 231 | . . . 4 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ |
| 22 | fodomnum 9948 | . . . 4 ⊢ ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ))) | |
| 23 | 7, 21, 22 | mp2 9 | . . 3 ⊢ ℤ ≼ (ℕ × ℕ) |
| 24 | xpnnen 16120 | . . 3 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 25 | domentr 8935 | . . 3 ⊢ ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ) | |
| 26 | 23, 24, 25 | mp2an 692 | . 2 ⊢ ℤ ≼ ℕ |
| 27 | zex 12477 | . . 3 ⊢ ℤ ∈ V | |
| 28 | nnssz 12490 | . . 3 ⊢ ℕ ⊆ ℤ | |
| 29 | ssdomg 8922 | . . 3 ⊢ (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ)) | |
| 30 | 27, 28, 29 | mp2 9 | . 2 ⊢ ℕ ≼ ℤ |
| 31 | sbth 9010 | . 2 ⊢ ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ) | |
| 32 | 26, 30, 31 | mp2an 692 | 1 ⊢ ℤ ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 × cxp 5612 dom cdm 5614 ↾ cres 5616 “ cima 5617 Oncon0 6306 Fun wfun 6475 ⟶wf 6477 –onto→wfo 6479 ωcom 7796 ≈ cen 8866 ≼ cdom 8867 cardccrd 9828 ℂcc 11004 − cmin 11344 ℕcn 12125 ℤcz 12468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 |
| This theorem is referenced by: qnnen 16122 ex-chn2 18544 odinf 19475 odhash 19486 cygctb 19804 iscmet3 25220 dyadmbl 25528 mbfsup 25592 dya2iocct 34293 zenom 45159 |
| Copyright terms: Public domain | W3C validator |