| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znnen | Structured version Visualization version GIF version | ||
| Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
| Ref | Expression |
|---|---|
| znnen | ⊢ ℤ ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9542 | . . . . . 6 ⊢ ω ∈ On | |
| 2 | nnenom 13887 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 3 | 2 | ensymi 8929 | . . . . . 6 ⊢ ω ≈ ℕ |
| 4 | isnumi 9842 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
| 5 | 1, 3, 4 | mp2an 692 | . . . . 5 ⊢ ℕ ∈ dom card |
| 6 | xpnum 9847 | . . . . 5 ⊢ ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . 4 ⊢ (ℕ × ℕ) ∈ dom card |
| 8 | subf 11365 | . . . . . . 7 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 9 | ffun 6655 | . . . . . . 7 ⊢ ( − :(ℂ × ℂ)⟶ℂ → Fun − ) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun − |
| 11 | nnsscn 12133 | . . . . . . . 8 ⊢ ℕ ⊆ ℂ | |
| 12 | xpss12 5634 | . . . . . . . 8 ⊢ ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ)) | |
| 13 | 11, 11, 12 | mp2an 692 | . . . . . . 7 ⊢ (ℕ × ℕ) ⊆ (ℂ × ℂ) |
| 14 | 8 | fdmi 6663 | . . . . . . 7 ⊢ dom − = (ℂ × ℂ) |
| 15 | 13, 14 | sseqtrri 3985 | . . . . . 6 ⊢ (ℕ × ℕ) ⊆ dom − |
| 16 | fores 6746 | . . . . . 6 ⊢ ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) | |
| 17 | 10, 15, 16 | mp2an 692 | . . . . 5 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)) |
| 18 | dfz2 12490 | . . . . . 6 ⊢ ℤ = ( − “ (ℕ × ℕ)) | |
| 19 | foeq3 6734 | . . . . . 6 ⊢ (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) |
| 21 | 17, 20 | mpbir 231 | . . . 4 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ |
| 22 | fodomnum 9951 | . . . 4 ⊢ ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ))) | |
| 23 | 7, 21, 22 | mp2 9 | . . 3 ⊢ ℤ ≼ (ℕ × ℕ) |
| 24 | xpnnen 16120 | . . 3 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 25 | domentr 8938 | . . 3 ⊢ ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ) | |
| 26 | 23, 24, 25 | mp2an 692 | . 2 ⊢ ℤ ≼ ℕ |
| 27 | zex 12480 | . . 3 ⊢ ℤ ∈ V | |
| 28 | nnssz 12493 | . . 3 ⊢ ℕ ⊆ ℤ | |
| 29 | ssdomg 8925 | . . 3 ⊢ (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ)) | |
| 30 | 27, 28, 29 | mp2 9 | . 2 ⊢ ℕ ≼ ℤ |
| 31 | sbth 9014 | . 2 ⊢ ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ) | |
| 32 | 26, 30, 31 | mp2an 692 | 1 ⊢ ℤ ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 class class class wbr 5092 × cxp 5617 dom cdm 5619 ↾ cres 5621 “ cima 5622 Oncon0 6307 Fun wfun 6476 ⟶wf 6478 –onto→wfo 6480 ωcom 7799 ≈ cen 8869 ≼ cdom 8870 cardccrd 9831 ℂcc 11007 − cmin 11347 ℕcn 12128 ℤcz 12471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 |
| This theorem is referenced by: qnnen 16122 odinf 19442 odhash 19453 cygctb 19771 iscmet3 25191 dyadmbl 25499 mbfsup 25563 dya2iocct 34248 zenom 45030 |
| Copyright terms: Public domain | W3C validator |