![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znnen | Structured version Visualization version GIF version |
Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
Ref | Expression |
---|---|
znnen | ⊢ ℤ ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9589 | . . . . . 6 ⊢ ω ∈ On | |
2 | nnenom 13892 | . . . . . . 7 ⊢ ℕ ≈ ω | |
3 | 2 | ensymi 8951 | . . . . . 6 ⊢ ω ≈ ℕ |
4 | isnumi 9889 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
5 | 1, 3, 4 | mp2an 691 | . . . . 5 ⊢ ℕ ∈ dom card |
6 | xpnum 9894 | . . . . 5 ⊢ ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card) | |
7 | 5, 5, 6 | mp2an 691 | . . . 4 ⊢ (ℕ × ℕ) ∈ dom card |
8 | subf 11410 | . . . . . . 7 ⊢ − :(ℂ × ℂ)⟶ℂ | |
9 | ffun 6676 | . . . . . . 7 ⊢ ( − :(ℂ × ℂ)⟶ℂ → Fun − ) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun − |
11 | nnsscn 12165 | . . . . . . . 8 ⊢ ℕ ⊆ ℂ | |
12 | xpss12 5653 | . . . . . . . 8 ⊢ ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ)) | |
13 | 11, 11, 12 | mp2an 691 | . . . . . . 7 ⊢ (ℕ × ℕ) ⊆ (ℂ × ℂ) |
14 | 8 | fdmi 6685 | . . . . . . 7 ⊢ dom − = (ℂ × ℂ) |
15 | 13, 14 | sseqtrri 3986 | . . . . . 6 ⊢ (ℕ × ℕ) ⊆ dom − |
16 | fores 6771 | . . . . . 6 ⊢ ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) | |
17 | 10, 15, 16 | mp2an 691 | . . . . 5 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)) |
18 | dfz2 12525 | . . . . . 6 ⊢ ℤ = ( − “ (ℕ × ℕ)) | |
19 | foeq3 6759 | . . . . . 6 ⊢ (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) |
21 | 17, 20 | mpbir 230 | . . . 4 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ |
22 | fodomnum 10000 | . . . 4 ⊢ ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ))) | |
23 | 7, 21, 22 | mp2 9 | . . 3 ⊢ ℤ ≼ (ℕ × ℕ) |
24 | xpnnen 16100 | . . 3 ⊢ (ℕ × ℕ) ≈ ℕ | |
25 | domentr 8960 | . . 3 ⊢ ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ) | |
26 | 23, 24, 25 | mp2an 691 | . 2 ⊢ ℤ ≼ ℕ |
27 | zex 12515 | . . 3 ⊢ ℤ ∈ V | |
28 | nnssz 12528 | . . 3 ⊢ ℕ ⊆ ℤ | |
29 | ssdomg 8947 | . . 3 ⊢ (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ)) | |
30 | 27, 28, 29 | mp2 9 | . 2 ⊢ ℕ ≼ ℤ |
31 | sbth 9044 | . 2 ⊢ ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ) | |
32 | 26, 30, 31 | mp2an 691 | 1 ⊢ ℤ ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ⊆ wss 3915 class class class wbr 5110 × cxp 5636 dom cdm 5638 ↾ cres 5640 “ cima 5641 Oncon0 6322 Fun wfun 6495 ⟶wf 6497 –onto→wfo 6499 ωcom 7807 ≈ cen 8887 ≼ cdom 8888 cardccrd 9878 ℂcc 11056 − cmin 11392 ℕcn 12160 ℤcz 12506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-oadd 8421 df-omul 8422 df-er 8655 df-map 8774 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-oi 9453 df-card 9882 df-acn 9885 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-nn 12161 df-n0 12421 df-z 12507 df-uz 12771 |
This theorem is referenced by: qnnen 16102 odinf 19352 odhash 19363 cygctb 19676 iscmet3 24673 dyadmbl 24980 mbfsup 25044 dya2iocct 32920 zenom 43334 |
Copyright terms: Public domain | W3C validator |