MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znnen Structured version   Visualization version   GIF version

Theorem znnen 16151
Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
znnen ℤ ≈ ℕ

Proof of Theorem znnen
StepHypRef Expression
1 omelon 9637 . . . . . 6 ω ∈ On
2 nnenom 13941 . . . . . . 7 ℕ ≈ ω
32ensymi 8996 . . . . . 6 ω ≈ ℕ
4 isnumi 9937 . . . . . 6 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
51, 3, 4mp2an 690 . . . . 5 ℕ ∈ dom card
6 xpnum 9942 . . . . 5 ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card)
75, 5, 6mp2an 690 . . . 4 (ℕ × ℕ) ∈ dom card
8 subf 11458 . . . . . . 7 − :(ℂ × ℂ)⟶ℂ
9 ffun 6717 . . . . . . 7 ( − :(ℂ × ℂ)⟶ℂ → Fun − )
108, 9ax-mp 5 . . . . . 6 Fun −
11 nnsscn 12213 . . . . . . . 8 ℕ ⊆ ℂ
12 xpss12 5690 . . . . . . . 8 ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ))
1311, 11, 12mp2an 690 . . . . . . 7 (ℕ × ℕ) ⊆ (ℂ × ℂ)
148fdmi 6726 . . . . . . 7 dom − = (ℂ × ℂ)
1513, 14sseqtrri 4018 . . . . . 6 (ℕ × ℕ) ⊆ dom −
16 fores 6812 . . . . . 6 ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))
1710, 15, 16mp2an 690 . . . . 5 ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))
18 dfz2 12573 . . . . . 6 ℤ = ( − “ (ℕ × ℕ))
19 foeq3 6800 . . . . . 6 (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))))
2018, 19ax-mp 5 . . . . 5 (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))
2117, 20mpbir 230 . . . 4 ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ
22 fodomnum 10048 . . . 4 ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ)))
237, 21, 22mp2 9 . . 3 ℤ ≼ (ℕ × ℕ)
24 xpnnen 16150 . . 3 (ℕ × ℕ) ≈ ℕ
25 domentr 9005 . . 3 ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ)
2623, 24, 25mp2an 690 . 2 ℤ ≼ ℕ
27 zex 12563 . . 3 ℤ ∈ V
28 nnssz 12576 . . 3 ℕ ⊆ ℤ
29 ssdomg 8992 . . 3 (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ))
3027, 28, 29mp2 9 . 2 ℕ ≼ ℤ
31 sbth 9089 . 2 ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ)
3226, 30, 31mp2an 690 1 ℤ ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wcel 2106  Vcvv 3474  wss 3947   class class class wbr 5147   × cxp 5673  dom cdm 5675  cres 5677  cima 5678  Oncon0 6361  Fun wfun 6534  wf 6536  ontowfo 6538  ωcom 7851  cen 8932  cdom 8933  cardccrd 9926  cc 11104  cmin 11440  cn 12208  cz 12554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-omul 8467  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-oi 9501  df-card 9930  df-acn 9933  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819
This theorem is referenced by:  qnnen  16152  odinf  19425  odhash  19436  cygctb  19754  iscmet3  24801  dyadmbl  25108  mbfsup  25172  dya2iocct  33267  zenom  43724
  Copyright terms: Public domain W3C validator