| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znnen | Structured version Visualization version GIF version | ||
| Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
| Ref | Expression |
|---|---|
| znnen | ⊢ ℤ ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9575 | . . . . . 6 ⊢ ω ∈ On | |
| 2 | nnenom 13921 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 3 | 2 | ensymi 8952 | . . . . . 6 ⊢ ω ≈ ℕ |
| 4 | isnumi 9875 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
| 5 | 1, 3, 4 | mp2an 692 | . . . . 5 ⊢ ℕ ∈ dom card |
| 6 | xpnum 9880 | . . . . 5 ⊢ ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . 4 ⊢ (ℕ × ℕ) ∈ dom card |
| 8 | subf 11399 | . . . . . . 7 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 9 | ffun 6673 | . . . . . . 7 ⊢ ( − :(ℂ × ℂ)⟶ℂ → Fun − ) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun − |
| 11 | nnsscn 12167 | . . . . . . . 8 ⊢ ℕ ⊆ ℂ | |
| 12 | xpss12 5646 | . . . . . . . 8 ⊢ ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ)) | |
| 13 | 11, 11, 12 | mp2an 692 | . . . . . . 7 ⊢ (ℕ × ℕ) ⊆ (ℂ × ℂ) |
| 14 | 8 | fdmi 6681 | . . . . . . 7 ⊢ dom − = (ℂ × ℂ) |
| 15 | 13, 14 | sseqtrri 3993 | . . . . . 6 ⊢ (ℕ × ℕ) ⊆ dom − |
| 16 | fores 6764 | . . . . . 6 ⊢ ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) | |
| 17 | 10, 15, 16 | mp2an 692 | . . . . 5 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)) |
| 18 | dfz2 12524 | . . . . . 6 ⊢ ℤ = ( − “ (ℕ × ℕ)) | |
| 19 | foeq3 6752 | . . . . . 6 ⊢ (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) |
| 21 | 17, 20 | mpbir 231 | . . . 4 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ |
| 22 | fodomnum 9986 | . . . 4 ⊢ ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ))) | |
| 23 | 7, 21, 22 | mp2 9 | . . 3 ⊢ ℤ ≼ (ℕ × ℕ) |
| 24 | xpnnen 16155 | . . 3 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 25 | domentr 8961 | . . 3 ⊢ ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ) | |
| 26 | 23, 24, 25 | mp2an 692 | . 2 ⊢ ℤ ≼ ℕ |
| 27 | zex 12514 | . . 3 ⊢ ℤ ∈ V | |
| 28 | nnssz 12527 | . . 3 ⊢ ℕ ⊆ ℤ | |
| 29 | ssdomg 8948 | . . 3 ⊢ (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ)) | |
| 30 | 27, 28, 29 | mp2 9 | . 2 ⊢ ℕ ≼ ℤ |
| 31 | sbth 9038 | . 2 ⊢ ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ) | |
| 32 | 26, 30, 31 | mp2an 692 | 1 ⊢ ℤ ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 × cxp 5629 dom cdm 5631 ↾ cres 5633 “ cima 5634 Oncon0 6320 Fun wfun 6493 ⟶wf 6495 –onto→wfo 6497 ωcom 7822 ≈ cen 8892 ≼ cdom 8893 cardccrd 9864 ℂcc 11042 − cmin 11381 ℕcn 12162 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-oadd 8415 df-omul 8416 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-oi 9439 df-card 9868 df-acn 9871 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 |
| This theorem is referenced by: qnnen 16157 odinf 19469 odhash 19480 cygctb 19798 iscmet3 25169 dyadmbl 25477 mbfsup 25541 dya2iocct 34244 zenom 45019 |
| Copyright terms: Public domain | W3C validator |