| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > znnen | Structured version Visualization version GIF version | ||
| Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
| Ref | Expression |
|---|---|
| znnen | ⊢ ℤ ≈ ℕ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omelon 9599 | . . . . . 6 ⊢ ω ∈ On | |
| 2 | nnenom 13945 | . . . . . . 7 ⊢ ℕ ≈ ω | |
| 3 | 2 | ensymi 8975 | . . . . . 6 ⊢ ω ≈ ℕ |
| 4 | isnumi 9899 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
| 5 | 1, 3, 4 | mp2an 692 | . . . . 5 ⊢ ℕ ∈ dom card |
| 6 | xpnum 9904 | . . . . 5 ⊢ ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card) | |
| 7 | 5, 5, 6 | mp2an 692 | . . . 4 ⊢ (ℕ × ℕ) ∈ dom card |
| 8 | subf 11423 | . . . . . . 7 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 9 | ffun 6691 | . . . . . . 7 ⊢ ( − :(ℂ × ℂ)⟶ℂ → Fun − ) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun − |
| 11 | nnsscn 12191 | . . . . . . . 8 ⊢ ℕ ⊆ ℂ | |
| 12 | xpss12 5653 | . . . . . . . 8 ⊢ ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ)) | |
| 13 | 11, 11, 12 | mp2an 692 | . . . . . . 7 ⊢ (ℕ × ℕ) ⊆ (ℂ × ℂ) |
| 14 | 8 | fdmi 6699 | . . . . . . 7 ⊢ dom − = (ℂ × ℂ) |
| 15 | 13, 14 | sseqtrri 3996 | . . . . . 6 ⊢ (ℕ × ℕ) ⊆ dom − |
| 16 | fores 6782 | . . . . . 6 ⊢ ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) | |
| 17 | 10, 15, 16 | mp2an 692 | . . . . 5 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)) |
| 18 | dfz2 12548 | . . . . . 6 ⊢ ℤ = ( − “ (ℕ × ℕ)) | |
| 19 | foeq3 6770 | . . . . . 6 ⊢ (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) |
| 21 | 17, 20 | mpbir 231 | . . . 4 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ |
| 22 | fodomnum 10010 | . . . 4 ⊢ ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ))) | |
| 23 | 7, 21, 22 | mp2 9 | . . 3 ⊢ ℤ ≼ (ℕ × ℕ) |
| 24 | xpnnen 16179 | . . 3 ⊢ (ℕ × ℕ) ≈ ℕ | |
| 25 | domentr 8984 | . . 3 ⊢ ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ) | |
| 26 | 23, 24, 25 | mp2an 692 | . 2 ⊢ ℤ ≼ ℕ |
| 27 | zex 12538 | . . 3 ⊢ ℤ ∈ V | |
| 28 | nnssz 12551 | . . 3 ⊢ ℕ ⊆ ℤ | |
| 29 | ssdomg 8971 | . . 3 ⊢ (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ)) | |
| 30 | 27, 28, 29 | mp2 9 | . 2 ⊢ ℕ ≼ ℤ |
| 31 | sbth 9061 | . 2 ⊢ ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ) | |
| 32 | 26, 30, 31 | mp2an 692 | 1 ⊢ ℤ ≈ ℕ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 × cxp 5636 dom cdm 5638 ↾ cres 5640 “ cima 5641 Oncon0 6332 Fun wfun 6505 ⟶wf 6507 –onto→wfo 6509 ωcom 7842 ≈ cen 8915 ≼ cdom 8916 cardccrd 9888 ℂcc 11066 − cmin 11405 ℕcn 12186 ℤcz 12529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-omul 8439 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-oi 9463 df-card 9892 df-acn 9895 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 |
| This theorem is referenced by: qnnen 16181 odinf 19493 odhash 19504 cygctb 19822 iscmet3 25193 dyadmbl 25501 mbfsup 25565 dya2iocct 34271 zenom 45046 |
| Copyright terms: Public domain | W3C validator |