Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > znnen | Structured version Visualization version GIF version |
Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
Ref | Expression |
---|---|
znnen | ⊢ ℤ ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9290 | . . . . . 6 ⊢ ω ∈ On | |
2 | nnenom 13584 | . . . . . . 7 ⊢ ℕ ≈ ω | |
3 | 2 | ensymi 8703 | . . . . . 6 ⊢ ω ≈ ℕ |
4 | isnumi 9591 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
5 | 1, 3, 4 | mp2an 692 | . . . . 5 ⊢ ℕ ∈ dom card |
6 | xpnum 9596 | . . . . 5 ⊢ ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card) | |
7 | 5, 5, 6 | mp2an 692 | . . . 4 ⊢ (ℕ × ℕ) ∈ dom card |
8 | subf 11109 | . . . . . . 7 ⊢ − :(ℂ × ℂ)⟶ℂ | |
9 | ffun 6569 | . . . . . . 7 ⊢ ( − :(ℂ × ℂ)⟶ℂ → Fun − ) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun − |
11 | nnsscn 11864 | . . . . . . . 8 ⊢ ℕ ⊆ ℂ | |
12 | xpss12 5583 | . . . . . . . 8 ⊢ ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ)) | |
13 | 11, 11, 12 | mp2an 692 | . . . . . . 7 ⊢ (ℕ × ℕ) ⊆ (ℂ × ℂ) |
14 | 8 | fdmi 6578 | . . . . . . 7 ⊢ dom − = (ℂ × ℂ) |
15 | 13, 14 | sseqtrri 3954 | . . . . . 6 ⊢ (ℕ × ℕ) ⊆ dom − |
16 | fores 6664 | . . . . . 6 ⊢ ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) | |
17 | 10, 15, 16 | mp2an 692 | . . . . 5 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)) |
18 | dfz2 12224 | . . . . . 6 ⊢ ℤ = ( − “ (ℕ × ℕ)) | |
19 | foeq3 6652 | . . . . . 6 ⊢ (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) |
21 | 17, 20 | mpbir 234 | . . . 4 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ |
22 | fodomnum 9700 | . . . 4 ⊢ ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ))) | |
23 | 7, 21, 22 | mp2 9 | . . 3 ⊢ ℤ ≼ (ℕ × ℕ) |
24 | xpnnen 15804 | . . 3 ⊢ (ℕ × ℕ) ≈ ℕ | |
25 | domentr 8712 | . . 3 ⊢ ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ) | |
26 | 23, 24, 25 | mp2an 692 | . 2 ⊢ ℤ ≼ ℕ |
27 | zex 12214 | . . 3 ⊢ ℤ ∈ V | |
28 | nnssz 12226 | . . 3 ⊢ ℕ ⊆ ℤ | |
29 | ssdomg 8699 | . . 3 ⊢ (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ)) | |
30 | 27, 28, 29 | mp2 9 | . 2 ⊢ ℕ ≼ ℤ |
31 | sbth 8791 | . 2 ⊢ ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ) | |
32 | 26, 30, 31 | mp2an 692 | 1 ⊢ ℤ ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2112 Vcvv 3423 ⊆ wss 3883 class class class wbr 5069 × cxp 5566 dom cdm 5568 ↾ cres 5570 “ cima 5571 Oncon0 6233 Fun wfun 6394 ⟶wf 6396 –onto→wfo 6398 ωcom 7665 ≈ cen 8646 ≼ cdom 8647 cardccrd 9580 ℂcc 10756 − cmin 11091 ℕcn 11859 ℤcz 12205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5195 ax-sep 5208 ax-nul 5215 ax-pow 5274 ax-pr 5338 ax-un 7544 ax-inf2 9285 ax-cnex 10814 ax-resscn 10815 ax-1cn 10816 ax-icn 10817 ax-addcl 10818 ax-addrcl 10819 ax-mulcl 10820 ax-mulrcl 10821 ax-mulcom 10822 ax-addass 10823 ax-mulass 10824 ax-distr 10825 ax-i2m1 10826 ax-1ne0 10827 ax-1rid 10828 ax-rnegex 10829 ax-rrecex 10830 ax-cnre 10831 ax-pre-lttri 10832 ax-pre-lttrn 10833 ax-pre-ltadd 10834 ax-pre-mulgt0 10835 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4456 df-pw 4531 df-sn 4558 df-pr 4560 df-tp 4562 df-op 4564 df-uni 4836 df-int 4876 df-iun 4922 df-br 5070 df-opab 5132 df-mpt 5152 df-tr 5178 df-id 5471 df-eprel 5477 df-po 5485 df-so 5486 df-fr 5526 df-se 5527 df-we 5528 df-xp 5574 df-rel 5575 df-cnv 5576 df-co 5577 df-dm 5578 df-rn 5579 df-res 5580 df-ima 5581 df-pred 6178 df-ord 6236 df-on 6237 df-lim 6238 df-suc 6239 df-iota 6358 df-fun 6402 df-fn 6403 df-f 6404 df-f1 6405 df-fo 6406 df-f1o 6407 df-fv 6408 df-isom 6409 df-riota 7191 df-ov 7237 df-oprab 7238 df-mpo 7239 df-om 7666 df-1st 7782 df-2nd 7783 df-wrecs 8070 df-recs 8131 df-rdg 8169 df-1o 8225 df-oadd 8229 df-omul 8230 df-er 8414 df-map 8533 df-en 8650 df-dom 8651 df-sdom 8652 df-fin 8653 df-oi 9155 df-card 9584 df-acn 9587 df-pnf 10898 df-mnf 10899 df-xr 10900 df-ltxr 10901 df-le 10902 df-sub 11093 df-neg 11094 df-nn 11860 df-n0 12120 df-z 12206 df-uz 12468 |
This theorem is referenced by: qnnen 15806 odinf 18986 odhash 18995 cygctb 19309 iscmet3 24221 dyadmbl 24528 mbfsup 24592 dya2iocct 31990 zenom 42320 |
Copyright terms: Public domain | W3C validator |