MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znnen Structured version   Visualization version   GIF version

Theorem znnen 15424
Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
znnen ℤ ≈ ℕ

Proof of Theorem znnen
StepHypRef Expression
1 omelon 8902 . . . . . 6 ω ∈ On
2 nnenom 13162 . . . . . . 7 ℕ ≈ ω
32ensymi 8355 . . . . . 6 ω ≈ ℕ
4 isnumi 9168 . . . . . 6 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
51, 3, 4mp2an 680 . . . . 5 ℕ ∈ dom card
6 xpnum 9173 . . . . 5 ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card)
75, 5, 6mp2an 680 . . . 4 (ℕ × ℕ) ∈ dom card
8 subf 10687 . . . . . . 7 − :(ℂ × ℂ)⟶ℂ
9 ffun 6345 . . . . . . 7 ( − :(ℂ × ℂ)⟶ℂ → Fun − )
108, 9ax-mp 5 . . . . . 6 Fun −
11 nnsscn 11443 . . . . . . . 8 ℕ ⊆ ℂ
12 xpss12 5419 . . . . . . . 8 ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ))
1311, 11, 12mp2an 680 . . . . . . 7 (ℕ × ℕ) ⊆ (ℂ × ℂ)
148fdmi 6352 . . . . . . 7 dom − = (ℂ × ℂ)
1513, 14sseqtr4i 3889 . . . . . 6 (ℕ × ℕ) ⊆ dom −
16 fores 6427 . . . . . 6 ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))
1710, 15, 16mp2an 680 . . . . 5 ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))
18 dfz2 11811 . . . . . 6 ℤ = ( − “ (ℕ × ℕ))
19 foeq3 6415 . . . . . 6 (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))))
2018, 19ax-mp 5 . . . . 5 (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))
2117, 20mpbir 223 . . . 4 ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ
22 fodomnum 9276 . . . 4 ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ)))
237, 21, 22mp2 9 . . 3 ℤ ≼ (ℕ × ℕ)
24 xpnnen 15423 . . 3 (ℕ × ℕ) ≈ ℕ
25 domentr 8364 . . 3 ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ)
2623, 24, 25mp2an 680 . 2 ℤ ≼ ℕ
27 zex 11801 . . 3 ℤ ∈ V
28 nnssz 11813 . . 3 ℕ ⊆ ℤ
29 ssdomg 8351 . . 3 (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ))
3027, 28, 29mp2 9 . 2 ℕ ≼ ℤ
31 sbth 8432 . 2 ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ)
3226, 30, 31mp2an 680 1 ℤ ≈ ℕ
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1508  wcel 2051  Vcvv 3410  wss 3824   class class class wbr 4926   × cxp 5402  dom cdm 5404  cres 5406  cima 5407  Oncon0 6027  Fun wfun 6180  wf 6182  ontowfo 6184  ωcom 7395  cen 8302  cdom 8303  cardccrd 9157  cc 10332  cmin 10669  cn 11438  cz 11792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-omul 7909  df-er 8088  df-map 8207  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-oi 8768  df-card 9161  df-acn 9164  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-n0 11707  df-z 11793  df-uz 12058
This theorem is referenced by:  qnnen  15425  odinf  18464  odhash  18473  cygctb  18779  iscmet3  23615  dyadmbl  23920  mbfsup  23984  dya2iocct  31216  zenom  40767
  Copyright terms: Public domain W3C validator