![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znnen | Structured version Visualization version GIF version |
Description: The set of integers and the set of positive integers are equinumerous. Exercise 1 of [Gleason] p. 140. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.) |
Ref | Expression |
---|---|
znnen | ⊢ ℤ ≈ ℕ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omelon 9637 | . . . . . 6 ⊢ ω ∈ On | |
2 | nnenom 13941 | . . . . . . 7 ⊢ ℕ ≈ ω | |
3 | 2 | ensymi 8996 | . . . . . 6 ⊢ ω ≈ ℕ |
4 | isnumi 9937 | . . . . . 6 ⊢ ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card) | |
5 | 1, 3, 4 | mp2an 690 | . . . . 5 ⊢ ℕ ∈ dom card |
6 | xpnum 9942 | . . . . 5 ⊢ ((ℕ ∈ dom card ∧ ℕ ∈ dom card) → (ℕ × ℕ) ∈ dom card) | |
7 | 5, 5, 6 | mp2an 690 | . . . 4 ⊢ (ℕ × ℕ) ∈ dom card |
8 | subf 11458 | . . . . . . 7 ⊢ − :(ℂ × ℂ)⟶ℂ | |
9 | ffun 6717 | . . . . . . 7 ⊢ ( − :(ℂ × ℂ)⟶ℂ → Fun − ) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ Fun − |
11 | nnsscn 12213 | . . . . . . . 8 ⊢ ℕ ⊆ ℂ | |
12 | xpss12 5690 | . . . . . . . 8 ⊢ ((ℕ ⊆ ℂ ∧ ℕ ⊆ ℂ) → (ℕ × ℕ) ⊆ (ℂ × ℂ)) | |
13 | 11, 11, 12 | mp2an 690 | . . . . . . 7 ⊢ (ℕ × ℕ) ⊆ (ℂ × ℂ) |
14 | 8 | fdmi 6726 | . . . . . . 7 ⊢ dom − = (ℂ × ℂ) |
15 | 13, 14 | sseqtrri 4018 | . . . . . 6 ⊢ (ℕ × ℕ) ⊆ dom − |
16 | fores 6812 | . . . . . 6 ⊢ ((Fun − ∧ (ℕ × ℕ) ⊆ dom − ) → ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) | |
17 | 10, 15, 16 | mp2an 690 | . . . . 5 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)) |
18 | dfz2 12573 | . . . . . 6 ⊢ ℤ = ( − “ (ℕ × ℕ)) | |
19 | foeq3 6800 | . . . . . 6 ⊢ (ℤ = ( − “ (ℕ × ℕ)) → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ)))) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ ↔ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→( − “ (ℕ × ℕ))) |
21 | 17, 20 | mpbir 230 | . . . 4 ⊢ ( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ |
22 | fodomnum 10048 | . . . 4 ⊢ ((ℕ × ℕ) ∈ dom card → (( − ↾ (ℕ × ℕ)):(ℕ × ℕ)–onto→ℤ → ℤ ≼ (ℕ × ℕ))) | |
23 | 7, 21, 22 | mp2 9 | . . 3 ⊢ ℤ ≼ (ℕ × ℕ) |
24 | xpnnen 16150 | . . 3 ⊢ (ℕ × ℕ) ≈ ℕ | |
25 | domentr 9005 | . . 3 ⊢ ((ℤ ≼ (ℕ × ℕ) ∧ (ℕ × ℕ) ≈ ℕ) → ℤ ≼ ℕ) | |
26 | 23, 24, 25 | mp2an 690 | . 2 ⊢ ℤ ≼ ℕ |
27 | zex 12563 | . . 3 ⊢ ℤ ∈ V | |
28 | nnssz 12576 | . . 3 ⊢ ℕ ⊆ ℤ | |
29 | ssdomg 8992 | . . 3 ⊢ (ℤ ∈ V → (ℕ ⊆ ℤ → ℕ ≼ ℤ)) | |
30 | 27, 28, 29 | mp2 9 | . 2 ⊢ ℕ ≼ ℤ |
31 | sbth 9089 | . 2 ⊢ ((ℤ ≼ ℕ ∧ ℕ ≼ ℤ) → ℤ ≈ ℕ) | |
32 | 26, 30, 31 | mp2an 690 | 1 ⊢ ℤ ≈ ℕ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 class class class wbr 5147 × cxp 5673 dom cdm 5675 ↾ cres 5677 “ cima 5678 Oncon0 6361 Fun wfun 6534 ⟶wf 6536 –onto→wfo 6538 ωcom 7851 ≈ cen 8932 ≼ cdom 8933 cardccrd 9926 ℂcc 11104 − cmin 11440 ℕcn 12208 ℤcz 12554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-omul 8467 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-oi 9501 df-card 9930 df-acn 9933 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 |
This theorem is referenced by: qnnen 16152 odinf 19425 odhash 19436 cygctb 19754 iscmet3 24801 dyadmbl 25108 mbfsup 25172 dya2iocct 33267 zenom 43724 |
Copyright terms: Public domain | W3C validator |