MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem10 Structured version   Visualization version   GIF version

Theorem isf32lem10 10253
Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
isf32lem.g 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
Assertion
Ref Expression
isf32lem10 (𝜑 → (𝐺𝑉 → ω ≼* 𝐺))
Distinct variable groups:   𝑥,𝑤   𝑡,𝐺   𝑥,𝐿   𝑡,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝜑   𝑤,𝐹,𝑥,𝑦   𝑆,𝑠,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦   𝐽,𝑠,𝑡,𝑤,𝑥,𝑦   𝐾,𝑠,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑣,𝑢,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢,𝑠)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)   𝐿(𝑦,𝑤,𝑣,𝑢,𝑡,𝑠)   𝑉(𝑥,𝑦,𝑤,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem isf32lem10
StepHypRef Expression
1 isf32lem.a . . 3 (𝜑𝐹:ω⟶𝒫 𝐺)
2 isf32lem.b . . 3 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
3 isf32lem.c . . 3 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
4 isf32lem.d . . 3 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
5 isf32lem.e . . 3 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
6 isf32lem.f . . 3 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
7 isf32lem.g . . 3 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
81, 2, 3, 4, 5, 6, 7isf32lem9 10252 . 2 (𝜑𝐿:𝐺onto→ω)
9 fof 6735 . . . . 5 (𝐿:𝐺onto→ω → 𝐿:𝐺⟶ω)
108, 9syl 17 . . . 4 (𝜑𝐿:𝐺⟶ω)
11 fex 7160 . . . 4 ((𝐿:𝐺⟶ω ∧ 𝐺𝑉) → 𝐿 ∈ V)
1210, 11sylan 580 . . 3 ((𝜑𝐺𝑉) → 𝐿 ∈ V)
1312ex 412 . 2 (𝜑 → (𝐺𝑉𝐿 ∈ V))
14 fowdom 9457 . . 3 ((𝐿 ∈ V ∧ 𝐿:𝐺onto→ω) → ω ≼* 𝐺)
1514expcom 413 . 2 (𝐿:𝐺onto→ω → (𝐿 ∈ V → ω ≼* 𝐺))
168, 13, 15sylsyld 61 1 (𝜑 → (𝐺𝑉 → ω ≼* 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395  Vcvv 3436  cdif 3894  cin 3896  wss 3897  wpss 3898  𝒫 cpw 4547   cint 4895   class class class wbr 5089  cmpt 5170  ran crn 5615  ccom 5618  suc csuc 6308  cio 6435  wf 6477  ontowfo 6479  cfv 6481  crio 7302  ωcom 7796  cen 8866  * cwdom 9450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-wdom 9451  df-card 9832
This theorem is referenced by:  isf32lem11  10254
  Copyright terms: Public domain W3C validator