| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf32lem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
| isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
| isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
| isf32lem.d | ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
| isf32lem.e | ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
| isf32lem.f | ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
| isf32lem.g | ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) |
| Ref | Expression |
|---|---|
| isf32lem10 | ⊢ (𝜑 → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | . . 3 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
| 2 | isf32lem.b | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
| 3 | isf32lem.c | . . 3 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
| 4 | isf32lem.d | . . 3 ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} | |
| 5 | isf32lem.e | . . 3 ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) | |
| 6 | isf32lem.f | . . 3 ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) | |
| 7 | isf32lem.g | . . 3 ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isf32lem9 10375 | . 2 ⊢ (𝜑 → 𝐿:𝐺–onto→ω) |
| 9 | fof 6790 | . . . . 5 ⊢ (𝐿:𝐺–onto→ω → 𝐿:𝐺⟶ω) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:𝐺⟶ω) |
| 11 | fex 7218 | . . . 4 ⊢ ((𝐿:𝐺⟶ω ∧ 𝐺 ∈ 𝑉) → 𝐿 ∈ V) | |
| 12 | 10, 11 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ∈ 𝑉) → 𝐿 ∈ V) |
| 13 | 12 | ex 412 | . 2 ⊢ (𝜑 → (𝐺 ∈ 𝑉 → 𝐿 ∈ V)) |
| 14 | fowdom 9585 | . . 3 ⊢ ((𝐿 ∈ V ∧ 𝐿:𝐺–onto→ω) → ω ≼* 𝐺) | |
| 15 | 14 | expcom 413 | . 2 ⊢ (𝐿:𝐺–onto→ω → (𝐿 ∈ V → ω ≼* 𝐺)) |
| 16 | 8, 13, 15 | sylsyld 61 | 1 ⊢ (𝜑 → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 Vcvv 3459 ∖ cdif 3923 ∩ cin 3925 ⊆ wss 3926 ⊊ wpss 3927 𝒫 cpw 4575 ∩ cint 4922 class class class wbr 5119 ↦ cmpt 5201 ran crn 5655 ∘ ccom 5658 suc csuc 6354 ℩cio 6482 ⟶wf 6527 –onto→wfo 6529 ‘cfv 6531 ℩crio 7361 ωcom 7861 ≈ cen 8956 ≼* cwdom 9578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-wdom 9579 df-card 9953 |
| This theorem is referenced by: isf32lem11 10377 |
| Copyright terms: Public domain | W3C validator |