| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf32lem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
| isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
| isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
| isf32lem.d | ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
| isf32lem.e | ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
| isf32lem.f | ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
| isf32lem.g | ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) |
| Ref | Expression |
|---|---|
| isf32lem10 | ⊢ (𝜑 → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | . . 3 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
| 2 | isf32lem.b | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
| 3 | isf32lem.c | . . 3 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
| 4 | isf32lem.d | . . 3 ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} | |
| 5 | isf32lem.e | . . 3 ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) | |
| 6 | isf32lem.f | . . 3 ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) | |
| 7 | isf32lem.g | . . 3 ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isf32lem9 10252 | . 2 ⊢ (𝜑 → 𝐿:𝐺–onto→ω) |
| 9 | fof 6735 | . . . . 5 ⊢ (𝐿:𝐺–onto→ω → 𝐿:𝐺⟶ω) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:𝐺⟶ω) |
| 11 | fex 7160 | . . . 4 ⊢ ((𝐿:𝐺⟶ω ∧ 𝐺 ∈ 𝑉) → 𝐿 ∈ V) | |
| 12 | 10, 11 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ∈ 𝑉) → 𝐿 ∈ V) |
| 13 | 12 | ex 412 | . 2 ⊢ (𝜑 → (𝐺 ∈ 𝑉 → 𝐿 ∈ V)) |
| 14 | fowdom 9457 | . . 3 ⊢ ((𝐿 ∈ V ∧ 𝐿:𝐺–onto→ω) → ω ≼* 𝐺) | |
| 15 | 14 | expcom 413 | . 2 ⊢ (𝐿:𝐺–onto→ω → (𝐿 ∈ V → ω ≼* 𝐺)) |
| 16 | 8, 13, 15 | sylsyld 61 | 1 ⊢ (𝜑 → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 ⊆ wss 3897 ⊊ wpss 3898 𝒫 cpw 4547 ∩ cint 4895 class class class wbr 5089 ↦ cmpt 5170 ran crn 5615 ∘ ccom 5618 suc csuc 6308 ℩cio 6435 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 ℩crio 7302 ωcom 7796 ≈ cen 8866 ≼* cwdom 9450 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-wdom 9451 df-card 9832 |
| This theorem is referenced by: isf32lem11 10254 |
| Copyright terms: Public domain | W3C validator |