| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isf32lem10 | Structured version Visualization version GIF version | ||
| Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
| isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
| isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
| isf32lem.d | ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
| isf32lem.e | ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
| isf32lem.f | ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
| isf32lem.g | ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) |
| Ref | Expression |
|---|---|
| isf32lem10 | ⊢ (𝜑 → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isf32lem.a | . . 3 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
| 2 | isf32lem.b | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
| 3 | isf32lem.c | . . 3 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
| 4 | isf32lem.d | . . 3 ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} | |
| 5 | isf32lem.e | . . 3 ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) | |
| 6 | isf32lem.f | . . 3 ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) | |
| 7 | isf32lem.g | . . 3 ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | isf32lem9 10314 | . 2 ⊢ (𝜑 → 𝐿:𝐺–onto→ω) |
| 9 | fof 6772 | . . . . 5 ⊢ (𝐿:𝐺–onto→ω → 𝐿:𝐺⟶ω) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:𝐺⟶ω) |
| 11 | fex 7200 | . . . 4 ⊢ ((𝐿:𝐺⟶ω ∧ 𝐺 ∈ 𝑉) → 𝐿 ∈ V) | |
| 12 | 10, 11 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ∈ 𝑉) → 𝐿 ∈ V) |
| 13 | 12 | ex 412 | . 2 ⊢ (𝜑 → (𝐺 ∈ 𝑉 → 𝐿 ∈ V)) |
| 14 | fowdom 9524 | . . 3 ⊢ ((𝐿 ∈ V ∧ 𝐿:𝐺–onto→ω) → ω ≼* 𝐺) | |
| 15 | 14 | expcom 413 | . 2 ⊢ (𝐿:𝐺–onto→ω → (𝐿 ∈ V → ω ≼* 𝐺)) |
| 16 | 8, 13, 15 | sylsyld 61 | 1 ⊢ (𝜑 → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 Vcvv 3447 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 ⊊ wpss 3915 𝒫 cpw 4563 ∩ cint 4910 class class class wbr 5107 ↦ cmpt 5188 ran crn 5639 ∘ ccom 5642 suc csuc 6334 ℩cio 6462 ⟶wf 6507 –onto→wfo 6509 ‘cfv 6511 ℩crio 7343 ωcom 7842 ≈ cen 8915 ≼* cwdom 9517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-wdom 9518 df-card 9892 |
| This theorem is referenced by: isf32lem11 10316 |
| Copyright terms: Public domain | W3C validator |