MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem10 Structured version   Visualization version   GIF version

Theorem isf32lem10 9773
Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
isf32lem.g 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
Assertion
Ref Expression
isf32lem10 (𝜑 → (𝐺𝑉 → ω ≼* 𝐺))
Distinct variable groups:   𝑥,𝑤   𝑡,𝐺   𝑥,𝐿   𝑡,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝜑   𝑤,𝐹,𝑥,𝑦   𝑆,𝑠,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦   𝐽,𝑠,𝑡,𝑤,𝑥,𝑦   𝐾,𝑠,𝑡,𝑥,𝑦
Allowed substitution hints:   𝐹(𝑣,𝑢,𝑡,𝑠)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢,𝑠)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)   𝐿(𝑦,𝑤,𝑣,𝑢,𝑡,𝑠)   𝑉(𝑥,𝑦,𝑤,𝑣,𝑢,𝑡,𝑠)

Proof of Theorem isf32lem10
StepHypRef Expression
1 isf32lem.a . . 3 (𝜑𝐹:ω⟶𝒫 𝐺)
2 isf32lem.b . . 3 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
3 isf32lem.c . . 3 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
4 isf32lem.d . . 3 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
5 isf32lem.e . . 3 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
6 isf32lem.f . . 3 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
7 isf32lem.g . . 3 𝐿 = (𝑡𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾𝑠))))
81, 2, 3, 4, 5, 6, 7isf32lem9 9772 . 2 (𝜑𝐿:𝐺onto→ω)
9 fof 6572 . . . . 5 (𝐿:𝐺onto→ω → 𝐿:𝐺⟶ω)
108, 9syl 17 . . . 4 (𝜑𝐿:𝐺⟶ω)
11 fex 6971 . . . 4 ((𝐿:𝐺⟶ω ∧ 𝐺𝑉) → 𝐿 ∈ V)
1210, 11sylan 583 . . 3 ((𝜑𝐺𝑉) → 𝐿 ∈ V)
1312ex 416 . 2 (𝜑 → (𝐺𝑉𝐿 ∈ V))
14 fowdom 9023 . . 3 ((𝐿 ∈ V ∧ 𝐿:𝐺onto→ω) → ω ≼* 𝐺)
1514expcom 417 . 2 (𝐿:𝐺onto→ω → (𝐿 ∈ V → ω ≼* 𝐺))
168, 13, 15sylsyld 61 1 (𝜑 → (𝐺𝑉 → ω ≼* 𝐺))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2114  wral 3130  {crab 3134  Vcvv 3469  cdif 3905  cin 3907  wss 3908  wpss 3909  𝒫 cpw 4511   cint 4851   class class class wbr 5042  cmpt 5122  ran crn 5533  ccom 5536  suc csuc 6171  cio 6291  wf 6330  ontowfo 6332  cfv 6334  crio 7097  ωcom 7565  cen 8493  * cwdom 9016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-se 5492  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-isom 6343  df-riota 7098  df-om 7566  df-wrecs 7934  df-recs 7995  df-1o 8089  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-wdom 9017  df-card 9356
This theorem is referenced by:  isf32lem11  9774
  Copyright terms: Public domain W3C validator