Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isf32lem10 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isf32lem.a | ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) |
isf32lem.b | ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) |
isf32lem.c | ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) |
isf32lem.d | ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} |
isf32lem.e | ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) |
isf32lem.f | ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) |
isf32lem.g | ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) |
Ref | Expression |
---|---|
isf32lem10 | ⊢ (𝜑 → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf32lem.a | . . 3 ⊢ (𝜑 → 𝐹:ω⟶𝒫 𝐺) | |
2 | isf32lem.b | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹‘𝑥)) | |
3 | isf32lem.c | . . 3 ⊢ (𝜑 → ¬ ∩ ran 𝐹 ∈ ran 𝐹) | |
4 | isf32lem.d | . . 3 ⊢ 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹‘𝑦)} | |
5 | isf32lem.e | . . 3 ⊢ 𝐽 = (𝑢 ∈ ω ↦ (℩𝑣 ∈ 𝑆 (𝑣 ∩ 𝑆) ≈ 𝑢)) | |
6 | isf32lem.f | . . 3 ⊢ 𝐾 = ((𝑤 ∈ 𝑆 ↦ ((𝐹‘𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽) | |
7 | isf32lem.g | . . 3 ⊢ 𝐿 = (𝑡 ∈ 𝐺 ↦ (℩𝑠(𝑠 ∈ ω ∧ 𝑡 ∈ (𝐾‘𝑠)))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isf32lem9 10048 | . 2 ⊢ (𝜑 → 𝐿:𝐺–onto→ω) |
9 | fof 6672 | . . . . 5 ⊢ (𝐿:𝐺–onto→ω → 𝐿:𝐺⟶ω) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐿:𝐺⟶ω) |
11 | fex 7084 | . . . 4 ⊢ ((𝐿:𝐺⟶ω ∧ 𝐺 ∈ 𝑉) → 𝐿 ∈ V) | |
12 | 10, 11 | sylan 579 | . . 3 ⊢ ((𝜑 ∧ 𝐺 ∈ 𝑉) → 𝐿 ∈ V) |
13 | 12 | ex 412 | . 2 ⊢ (𝜑 → (𝐺 ∈ 𝑉 → 𝐿 ∈ V)) |
14 | fowdom 9260 | . . 3 ⊢ ((𝐿 ∈ V ∧ 𝐿:𝐺–onto→ω) → ω ≼* 𝐺) | |
15 | 14 | expcom 413 | . 2 ⊢ (𝐿:𝐺–onto→ω → (𝐿 ∈ V → ω ≼* 𝐺)) |
16 | 8, 13, 15 | sylsyld 61 | 1 ⊢ (𝜑 → (𝐺 ∈ 𝑉 → ω ≼* 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 Vcvv 3422 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ⊊ wpss 3884 𝒫 cpw 4530 ∩ cint 4876 class class class wbr 5070 ↦ cmpt 5153 ran crn 5581 ∘ ccom 5584 suc csuc 6253 ℩cio 6374 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 ℩crio 7211 ωcom 7687 ≈ cen 8688 ≼* cwdom 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-wdom 9254 df-card 9628 |
This theorem is referenced by: isf32lem11 10050 |
Copyright terms: Public domain | W3C validator |