![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isf32lem10 | Structured version Visualization version GIF version |
Description: Lemma for isfin3-2 . Write in terms of weak dominance. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
Ref | Expression |
---|---|
isf32lem.a | β’ (π β πΉ:ΟβΆπ« πΊ) |
isf32lem.b | β’ (π β βπ₯ β Ο (πΉβsuc π₯) β (πΉβπ₯)) |
isf32lem.c | β’ (π β Β¬ β© ran πΉ β ran πΉ) |
isf32lem.d | β’ π = {π¦ β Ο β£ (πΉβsuc π¦) β (πΉβπ¦)} |
isf32lem.e | β’ π½ = (π’ β Ο β¦ (β©π£ β π (π£ β© π) β π’)) |
isf32lem.f | β’ πΎ = ((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€))) β π½) |
isf32lem.g | β’ πΏ = (π‘ β πΊ β¦ (β©π (π β Ο β§ π‘ β (πΎβπ )))) |
Ref | Expression |
---|---|
isf32lem10 | β’ (π β (πΊ β π β Ο βΌ* πΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isf32lem.a | . . 3 β’ (π β πΉ:ΟβΆπ« πΊ) | |
2 | isf32lem.b | . . 3 β’ (π β βπ₯ β Ο (πΉβsuc π₯) β (πΉβπ₯)) | |
3 | isf32lem.c | . . 3 β’ (π β Β¬ β© ran πΉ β ran πΉ) | |
4 | isf32lem.d | . . 3 β’ π = {π¦ β Ο β£ (πΉβsuc π¦) β (πΉβπ¦)} | |
5 | isf32lem.e | . . 3 β’ π½ = (π’ β Ο β¦ (β©π£ β π (π£ β© π) β π’)) | |
6 | isf32lem.f | . . 3 β’ πΎ = ((π€ β π β¦ ((πΉβπ€) β (πΉβsuc π€))) β π½) | |
7 | isf32lem.g | . . 3 β’ πΏ = (π‘ β πΊ β¦ (β©π (π β Ο β§ π‘ β (πΎβπ )))) | |
8 | 1, 2, 3, 4, 5, 6, 7 | isf32lem9 10359 | . 2 β’ (π β πΏ:πΊβontoβΟ) |
9 | fof 6806 | . . . . 5 β’ (πΏ:πΊβontoβΟ β πΏ:πΊβΆΟ) | |
10 | 8, 9 | syl 17 | . . . 4 β’ (π β πΏ:πΊβΆΟ) |
11 | fex 7231 | . . . 4 β’ ((πΏ:πΊβΆΟ β§ πΊ β π) β πΏ β V) | |
12 | 10, 11 | sylan 579 | . . 3 β’ ((π β§ πΊ β π) β πΏ β V) |
13 | 12 | ex 412 | . 2 β’ (π β (πΊ β π β πΏ β V)) |
14 | fowdom 9569 | . . 3 β’ ((πΏ β V β§ πΏ:πΊβontoβΟ) β Ο βΌ* πΊ) | |
15 | 14 | expcom 413 | . 2 β’ (πΏ:πΊβontoβΟ β (πΏ β V β Ο βΌ* πΊ)) |
16 | 8, 13, 15 | sylsyld 61 | 1 β’ (π β (πΊ β π β Ο βΌ* πΊ)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 βwral 3060 {crab 3431 Vcvv 3473 β cdif 3946 β© cin 3948 β wss 3949 β wpss 3950 π« cpw 4603 β© cint 4951 class class class wbr 5149 β¦ cmpt 5232 ran crn 5678 β ccom 5681 suc csuc 6367 β©cio 6494 βΆwf 6540 βontoβwfo 6542 βcfv 6544 β©crio 7367 Οcom 7858 β cen 8939 βΌ* cwdom 9562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-wdom 9563 df-card 9937 |
This theorem is referenced by: isf32lem11 10361 |
Copyright terms: Public domain | W3C validator |