MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomref Structured version   Visualization version   GIF version

Theorem wdomref 9525
Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
wdomref (𝑋𝑉𝑋* 𝑋)

Proof of Theorem wdomref
StepHypRef Expression
1 resiexg 7888 . 2 (𝑋𝑉 → ( I ↾ 𝑋) ∈ V)
2 f1oi 6838 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1ofo 6807 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
42, 3ax-mp 5 . 2 ( I ↾ 𝑋):𝑋onto𝑋
5 fowdom 9524 . 2 ((( I ↾ 𝑋) ∈ V ∧ ( I ↾ 𝑋):𝑋onto𝑋) → 𝑋* 𝑋)
61, 4, 5sylancl 586 1 (𝑋𝑉𝑋* 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3447   class class class wbr 5107   I cid 5532  cres 5640  ontowfo 6509  1-1-ontowf1o 6510  * cwdom 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-wdom 9518
This theorem is referenced by:  hsmexlem3  10381  hsmexlem5  10383
  Copyright terms: Public domain W3C validator