MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomref Structured version   Visualization version   GIF version

Theorem wdomref 9532
Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
wdomref (𝑋𝑉𝑋* 𝑋)

Proof of Theorem wdomref
StepHypRef Expression
1 resiexg 7891 . 2 (𝑋𝑉 → ( I ↾ 𝑋) ∈ V)
2 f1oi 6841 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1ofo 6810 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
42, 3ax-mp 5 . 2 ( I ↾ 𝑋):𝑋onto𝑋
5 fowdom 9531 . 2 ((( I ↾ 𝑋) ∈ V ∧ ( I ↾ 𝑋):𝑋onto𝑋) → 𝑋* 𝑋)
61, 4, 5sylancl 586 1 (𝑋𝑉𝑋* 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Vcvv 3450   class class class wbr 5110   I cid 5535  cres 5643  ontowfo 6512  1-1-ontowf1o 6513  * cwdom 9524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-wdom 9525
This theorem is referenced by:  hsmexlem3  10388  hsmexlem5  10390
  Copyright terms: Public domain W3C validator