MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomref Structured version   Visualization version   GIF version

Theorem wdomref 9586
Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
wdomref (𝑋𝑉𝑋* 𝑋)

Proof of Theorem wdomref
StepHypRef Expression
1 resiexg 7908 . 2 (𝑋𝑉 → ( I ↾ 𝑋) ∈ V)
2 f1oi 6856 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1ofo 6825 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
42, 3ax-mp 5 . 2 ( I ↾ 𝑋):𝑋onto𝑋
5 fowdom 9585 . 2 ((( I ↾ 𝑋) ∈ V ∧ ( I ↾ 𝑋):𝑋onto𝑋) → 𝑋* 𝑋)
61, 4, 5sylancl 586 1 (𝑋𝑉𝑋* 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  Vcvv 3459   class class class wbr 5119   I cid 5547  cres 5656  ontowfo 6529  1-1-ontowf1o 6530  * cwdom 9578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-wdom 9579
This theorem is referenced by:  hsmexlem3  10442  hsmexlem5  10444
  Copyright terms: Public domain W3C validator