Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wdomref | Structured version Visualization version GIF version |
Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
wdomref | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 7735 | . 2 ⊢ (𝑋 ∈ 𝑉 → ( I ↾ 𝑋) ∈ V) | |
2 | f1oi 6737 | . . 3 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1ofo 6707 | . . 3 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ( I ↾ 𝑋):𝑋–onto→𝑋 |
5 | fowdom 9260 | . 2 ⊢ ((( I ↾ 𝑋) ∈ V ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → 𝑋 ≼* 𝑋) | |
6 | 1, 4, 5 | sylancl 585 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 I cid 5479 ↾ cres 5582 –onto→wfo 6416 –1-1-onto→wf1o 6417 ≼* cwdom 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-wdom 9254 |
This theorem is referenced by: hsmexlem3 10115 hsmexlem5 10117 |
Copyright terms: Public domain | W3C validator |