MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomref Structured version   Visualization version   GIF version

Theorem wdomref 9566
Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
wdomref (𝑋𝑉𝑋* 𝑋)

Proof of Theorem wdomref
StepHypRef Expression
1 resiexg 7904 . 2 (𝑋𝑉 → ( I ↾ 𝑋) ∈ V)
2 f1oi 6871 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1ofo 6840 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
42, 3ax-mp 5 . 2 ( I ↾ 𝑋):𝑋onto𝑋
5 fowdom 9565 . 2 ((( I ↾ 𝑋) ∈ V ∧ ( I ↾ 𝑋):𝑋onto𝑋) → 𝑋* 𝑋)
61, 4, 5sylancl 586 1 (𝑋𝑉𝑋* 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Vcvv 3474   class class class wbr 5148   I cid 5573  cres 5678  ontowfo 6541  1-1-ontowf1o 6542  * cwdom 9558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-wdom 9559
This theorem is referenced by:  hsmexlem3  10422  hsmexlem5  10424
  Copyright terms: Public domain W3C validator