| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wdomref | Structured version Visualization version GIF version | ||
| Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| wdomref | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resiexg 7848 | . 2 ⊢ (𝑋 ∈ 𝑉 → ( I ↾ 𝑋) ∈ V) | |
| 2 | f1oi 6806 | . . 3 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 3 | f1ofo 6775 | . . 3 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ( I ↾ 𝑋):𝑋–onto→𝑋 |
| 5 | fowdom 9464 | . 2 ⊢ ((( I ↾ 𝑋) ∈ V ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → 𝑋 ≼* 𝑋) | |
| 6 | 1, 4, 5 | sylancl 586 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3437 class class class wbr 5093 I cid 5513 ↾ cres 5621 –onto→wfo 6484 –1-1-onto→wf1o 6485 ≼* cwdom 9457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-wdom 9458 |
| This theorem is referenced by: hsmexlem3 10326 hsmexlem5 10328 |
| Copyright terms: Public domain | W3C validator |