| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wdomref | Structured version Visualization version GIF version | ||
| Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| wdomref | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resiexg 7908 | . 2 ⊢ (𝑋 ∈ 𝑉 → ( I ↾ 𝑋) ∈ V) | |
| 2 | f1oi 6856 | . . 3 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
| 3 | f1ofo 6825 | . . 3 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ ( I ↾ 𝑋):𝑋–onto→𝑋 |
| 5 | fowdom 9585 | . 2 ⊢ ((( I ↾ 𝑋) ∈ V ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → 𝑋 ≼* 𝑋) | |
| 6 | 1, 4, 5 | sylancl 586 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 I cid 5547 ↾ cres 5656 –onto→wfo 6529 –1-1-onto→wf1o 6530 ≼* cwdom 9578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-wdom 9579 |
| This theorem is referenced by: hsmexlem3 10442 hsmexlem5 10444 |
| Copyright terms: Public domain | W3C validator |