![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wdomref | Structured version Visualization version GIF version |
Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
wdomref | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resiexg 7432 | . 2 ⊢ (𝑋 ∈ 𝑉 → ( I ↾ 𝑋) ∈ V) | |
2 | f1oi 6478 | . . 3 ⊢ ( I ↾ 𝑋):𝑋–1-1-onto→𝑋 | |
3 | f1ofo 6448 | . . 3 ⊢ (( I ↾ 𝑋):𝑋–1-1-onto→𝑋 → ( I ↾ 𝑋):𝑋–onto→𝑋) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ ( I ↾ 𝑋):𝑋–onto→𝑋 |
5 | fowdom 8828 | . 2 ⊢ ((( I ↾ 𝑋) ∈ V ∧ ( I ↾ 𝑋):𝑋–onto→𝑋) → 𝑋 ≼* 𝑋) | |
6 | 1, 4, 5 | sylancl 578 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 Vcvv 3408 class class class wbr 4925 I cid 5307 ↾ cres 5405 –onto→wfo 6183 –1-1-onto→wf1o 6184 ≼* cwdom 8814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4709 df-br 4926 df-opab 4988 df-id 5308 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-wdom 8816 |
This theorem is referenced by: hsmexlem3 9646 hsmexlem5 9648 |
Copyright terms: Public domain | W3C validator |