MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wdomref Structured version   Visualization version   GIF version

Theorem wdomref 9188
Description: Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
wdomref (𝑋𝑉𝑋* 𝑋)

Proof of Theorem wdomref
StepHypRef Expression
1 resiexg 7692 . 2 (𝑋𝑉 → ( I ↾ 𝑋) ∈ V)
2 f1oi 6698 . . 3 ( I ↾ 𝑋):𝑋1-1-onto𝑋
3 f1ofo 6668 . . 3 (( I ↾ 𝑋):𝑋1-1-onto𝑋 → ( I ↾ 𝑋):𝑋onto𝑋)
42, 3ax-mp 5 . 2 ( I ↾ 𝑋):𝑋onto𝑋
5 fowdom 9187 . 2 ((( I ↾ 𝑋) ∈ V ∧ ( I ↾ 𝑋):𝑋onto𝑋) → 𝑋* 𝑋)
61, 4, 5sylancl 589 1 (𝑋𝑉𝑋* 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Vcvv 3408   class class class wbr 5053   I cid 5454  cres 5553  ontowfo 6378  1-1-ontowf1o 6379  * cwdom 9180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-wdom 9181
This theorem is referenced by:  hsmexlem3  10042  hsmexlem5  10044
  Copyright terms: Public domain W3C validator