MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frnssb Structured version   Visualization version   GIF version

Theorem frnssb 6977
Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
frnssb ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → (𝐹:𝐴𝑊𝐹:𝐴𝑉))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑉
Allowed substitution hint:   𝑊(𝑘)

Proof of Theorem frnssb
StepHypRef Expression
1 simpr 484 . . . 4 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉)
2 ffn 6584 . . . 4 (𝐹:𝐴𝑊𝐹 Fn 𝐴)
31, 2anim12ci 613 . . 3 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑊) → (𝐹 Fn 𝐴 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉))
4 ffnfv 6974 . . 3 (𝐹:𝐴𝑉 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉))
53, 4sylibr 233 . 2 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑊) → 𝐹:𝐴𝑉)
6 simpl 482 . . . 4 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → 𝑉𝑊)
76anim1ci 615 . . 3 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑉) → (𝐹:𝐴𝑉𝑉𝑊))
8 fss 6601 . . 3 ((𝐹:𝐴𝑉𝑉𝑊) → 𝐹:𝐴𝑊)
97, 8syl 17 . 2 (((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) ∧ 𝐹:𝐴𝑉) → 𝐹:𝐴𝑊)
105, 9impbida 797 1 ((𝑉𝑊 ∧ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝑉) → (𝐹:𝐴𝑊𝐹:𝐴𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063  wss 3883   Fn wfn 6413  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  wlkdlem1  27952  0prjspnrel  40385
  Copyright terms: Public domain W3C validator