![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frnssb | Structured version Visualization version GIF version |
Description: A function is a function into a subset of its codomain if all of its values are elements of this subset. (Contributed by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
frnssb | ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . . . 4 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) | |
2 | ffn 6291 | . . . 4 ⊢ (𝐹:𝐴⟶𝑊 → 𝐹 Fn 𝐴) | |
3 | 1, 2 | anim12ci 607 | . . 3 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑊) → (𝐹 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉)) |
4 | ffnfv 6652 | . . 3 ⊢ (𝐹:𝐴⟶𝑉 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉)) | |
5 | 3, 4 | sylibr 226 | . 2 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑊) → 𝐹:𝐴⟶𝑉) |
6 | simpl 476 | . . . 4 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → 𝑉 ⊆ 𝑊) | |
7 | 6 | anim1ci 609 | . . 3 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑉) → (𝐹:𝐴⟶𝑉 ∧ 𝑉 ⊆ 𝑊)) |
8 | fss 6304 | . . 3 ⊢ ((𝐹:𝐴⟶𝑉 ∧ 𝑉 ⊆ 𝑊) → 𝐹:𝐴⟶𝑊) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) ∧ 𝐹:𝐴⟶𝑉) → 𝐹:𝐴⟶𝑊) |
10 | 5, 9 | impbida 791 | 1 ⊢ ((𝑉 ⊆ 𝑊 ∧ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝑉) → (𝐹:𝐴⟶𝑊 ↔ 𝐹:𝐴⟶𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2106 ∀wral 3089 ⊆ wss 3791 Fn wfn 6130 ⟶wf 6131 ‘cfv 6135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-sbc 3652 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-fv 6143 |
This theorem is referenced by: wlkdlem1 27033 |
Copyright terms: Public domain | W3C validator |