| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fucoid2 | Structured version Visualization version GIF version | ||
| Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid 49243. (Contributed by Zhi Wang, 30-Sep-2025.) |
| Ref | Expression |
|---|---|
| fucoid.o | ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) |
| fucoid.t | ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) |
| fucoid.1 | ⊢ 1 = (Id‘𝑇) |
| fucoid.q | ⊢ 𝑄 = (𝐶 FuncCat 𝐸) |
| fucoid.i | ⊢ 𝐼 = (Id‘𝑄) |
| fucoid2.w | ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| fucoid2.u | ⊢ (𝜑 → 𝑈 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| fucoid2 | ⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoid.o | . 2 ⊢ (𝜑 → (〈𝐶, 𝐷〉 ∘F 𝐸) = 〈𝑂, 𝑃〉) | |
| 2 | fucoid.t | . 2 ⊢ 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷)) | |
| 3 | fucoid.1 | . 2 ⊢ 1 = (Id‘𝑇) | |
| 4 | fucoid.q | . 2 ⊢ 𝑄 = (𝐶 FuncCat 𝐸) | |
| 5 | fucoid.i | . 2 ⊢ 𝐼 = (Id‘𝑄) | |
| 6 | fucoid2.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ 𝑊) | |
| 7 | fucoid2.w | . . . . . 6 ⊢ (𝜑 → 𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) | |
| 8 | relfunc 17830 | . . . . . 6 ⊢ Rel (𝐷 Func 𝐸) | |
| 9 | relfunc 17830 | . . . . . 6 ⊢ Rel (𝐶 Func 𝐷) | |
| 10 | 7, 6, 8, 9 | fuco2eld2 49209 | . . . . 5 ⊢ (𝜑 → 𝑈 = 〈〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉, 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉〉) |
| 11 | 6, 10, 7 | 3eltr3d 2843 | . . . 4 ⊢ (𝜑 → 〈〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉, 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉〉 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷))) |
| 12 | opelxp2 5689 | . . . 4 ⊢ (〈〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉, 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉〉 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉 ∈ (𝐶 Func 𝐷)) | |
| 13 | 11, 12 | syl 17 | . . 3 ⊢ (𝜑 → 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉 ∈ (𝐶 Func 𝐷)) |
| 14 | df-br 5116 | . . 3 ⊢ ((1st ‘(2nd ‘𝑈))(𝐶 Func 𝐷)(2nd ‘(2nd ‘𝑈)) ↔ 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉 ∈ (𝐶 Func 𝐷)) | |
| 15 | 13, 14 | sylibr 234 | . 2 ⊢ (𝜑 → (1st ‘(2nd ‘𝑈))(𝐶 Func 𝐷)(2nd ‘(2nd ‘𝑈))) |
| 16 | opelxp1 5688 | . . . 4 ⊢ (〈〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉, 〈(1st ‘(2nd ‘𝑈)), (2nd ‘(2nd ‘𝑈))〉〉 ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉 ∈ (𝐷 Func 𝐸)) | |
| 17 | 11, 16 | syl 17 | . . 3 ⊢ (𝜑 → 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉 ∈ (𝐷 Func 𝐸)) |
| 18 | df-br 5116 | . . 3 ⊢ ((1st ‘(1st ‘𝑈))(𝐷 Func 𝐸)(2nd ‘(1st ‘𝑈)) ↔ 〈(1st ‘(1st ‘𝑈)), (2nd ‘(1st ‘𝑈))〉 ∈ (𝐷 Func 𝐸)) | |
| 19 | 17, 18 | sylibr 234 | . 2 ⊢ (𝜑 → (1st ‘(1st ‘𝑈))(𝐷 Func 𝐸)(2nd ‘(1st ‘𝑈))) |
| 20 | 1, 2, 3, 4, 5, 15, 19, 10 | fucoid 49243 | 1 ⊢ (𝜑 → ((𝑈𝑃𝑈)‘( 1 ‘𝑈)) = (𝐼‘(𝑂‘𝑈))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 〈cop 4603 class class class wbr 5115 × cxp 5644 ‘cfv 6519 (class class class)co 7394 1st c1st 7975 2nd c2nd 7976 Idccid 17632 Func cfunc 17822 FuncCat cfuc 17913 ×c cxpc 18135 ∘F cfuco 49211 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-hom 17250 df-cco 17251 df-cat 17635 df-cid 17636 df-func 17826 df-cofu 17828 df-nat 17914 df-fuc 17915 df-xpc 18139 df-fuco 49212 |
| This theorem is referenced by: fucofunc 49254 |
| Copyright terms: Public domain | W3C validator |