Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoid2 Structured version   Visualization version   GIF version

Theorem fucoid2 49004
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid 49003. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fucoid.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoid.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoid.1 1 = (Id‘𝑇)
fucoid.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoid.i 𝐼 = (Id‘𝑄)
fucoid2.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
fucoid2.u (𝜑𝑈𝑊)
Assertion
Ref Expression
fucoid2 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))

Proof of Theorem fucoid2
StepHypRef Expression
1 fucoid.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fucoid.t . 2 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
3 fucoid.1 . 2 1 = (Id‘𝑇)
4 fucoid.q . 2 𝑄 = (𝐶 FuncCat 𝐸)
5 fucoid.i . 2 𝐼 = (Id‘𝑄)
6 fucoid2.u . . . . 5 (𝜑𝑈𝑊)
7 fucoid2.w . . . . . 6 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
8 relfunc 17879 . . . . . 6 Rel (𝐷 Func 𝐸)
9 relfunc 17879 . . . . . 6 Rel (𝐶 Func 𝐷)
107, 6, 8, 9fuco2eld2 48969 . . . . 5 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
116, 10, 73eltr3d 2847 . . . 4 (𝜑 → ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
12 opelxp2 5710 . . . 4 (⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩ ∈ (𝐶 Func 𝐷))
1311, 12syl 17 . . 3 (𝜑 → ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩ ∈ (𝐶 Func 𝐷))
14 df-br 5126 . . 3 ((1st ‘(2nd𝑈))(𝐶 Func 𝐷)(2nd ‘(2nd𝑈)) ↔ ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩ ∈ (𝐶 Func 𝐷))
1513, 14sylibr 234 . 2 (𝜑 → (1st ‘(2nd𝑈))(𝐶 Func 𝐷)(2nd ‘(2nd𝑈)))
16 opelxp1 5709 . . . 4 (⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩ ∈ (𝐷 Func 𝐸))
1711, 16syl 17 . . 3 (𝜑 → ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩ ∈ (𝐷 Func 𝐸))
18 df-br 5126 . . 3 ((1st ‘(1st𝑈))(𝐷 Func 𝐸)(2nd ‘(1st𝑈)) ↔ ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩ ∈ (𝐷 Func 𝐸))
1917, 18sylibr 234 . 2 (𝜑 → (1st ‘(1st𝑈))(𝐷 Func 𝐸)(2nd ‘(1st𝑈)))
201, 2, 3, 4, 5, 15, 19, 10fucoid 49003 1 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  cop 4614   class class class wbr 5125   × cxp 5665  cfv 6542  (class class class)co 7414  1st c1st 7995  2nd c2nd 7996  Idccid 17680   Func cfunc 17871   FuncCat cfuc 17962   ×c cxpc 18184  F cfuco 48971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-fz 13531  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-hom 17298  df-cco 17299  df-cat 17683  df-cid 17684  df-func 17875  df-cofu 17877  df-nat 17963  df-fuc 17964  df-xpc 18188  df-fuco 48972
This theorem is referenced by:  fucofunc  49014
  Copyright terms: Public domain W3C validator