Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fucoid2 Structured version   Visualization version   GIF version

Theorem fucoid2 48916
Description: Each identity morphism in the source category is mapped to the corresponding identity morphism in the target category. See also fucoid 48915. (Contributed by Zhi Wang, 30-Sep-2025.)
Hypotheses
Ref Expression
fucoid.o (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
fucoid.t 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
fucoid.1 1 = (Id‘𝑇)
fucoid.q 𝑄 = (𝐶 FuncCat 𝐸)
fucoid.i 𝐼 = (Id‘𝑄)
fucoid2.w (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
fucoid2.u (𝜑𝑈𝑊)
Assertion
Ref Expression
fucoid2 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))

Proof of Theorem fucoid2
StepHypRef Expression
1 fucoid.o . 2 (𝜑 → (⟨𝐶, 𝐷⟩ ∘F 𝐸) = ⟨𝑂, 𝑃⟩)
2 fucoid.t . 2 𝑇 = ((𝐷 FuncCat 𝐸) ×c (𝐶 FuncCat 𝐷))
3 fucoid.1 . 2 1 = (Id‘𝑇)
4 fucoid.q . 2 𝑄 = (𝐶 FuncCat 𝐸)
5 fucoid.i . 2 𝐼 = (Id‘𝑄)
6 fucoid2.u . . . . 5 (𝜑𝑈𝑊)
7 fucoid2.w . . . . . 6 (𝜑𝑊 = ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
8 relfunc 17922 . . . . . 6 Rel (𝐷 Func 𝐸)
9 relfunc 17922 . . . . . 6 Rel (𝐶 Func 𝐷)
107, 6, 8, 9fuco2eld2 48883 . . . . 5 (𝜑𝑈 = ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩)
116, 10, 73eltr3d 2855 . . . 4 (𝜑 → ⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)))
12 opelxp2 5736 . . . 4 (⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩ ∈ (𝐶 Func 𝐷))
1311, 12syl 17 . . 3 (𝜑 → ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩ ∈ (𝐶 Func 𝐷))
14 df-br 5152 . . 3 ((1st ‘(2nd𝑈))(𝐶 Func 𝐷)(2nd ‘(2nd𝑈)) ↔ ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩ ∈ (𝐶 Func 𝐷))
1513, 14sylibr 234 . 2 (𝜑 → (1st ‘(2nd𝑈))(𝐶 Func 𝐷)(2nd ‘(2nd𝑈)))
16 opelxp1 5735 . . . 4 (⟨⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩, ⟨(1st ‘(2nd𝑈)), (2nd ‘(2nd𝑈))⟩⟩ ∈ ((𝐷 Func 𝐸) × (𝐶 Func 𝐷)) → ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩ ∈ (𝐷 Func 𝐸))
1711, 16syl 17 . . 3 (𝜑 → ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩ ∈ (𝐷 Func 𝐸))
18 df-br 5152 . . 3 ((1st ‘(1st𝑈))(𝐷 Func 𝐸)(2nd ‘(1st𝑈)) ↔ ⟨(1st ‘(1st𝑈)), (2nd ‘(1st𝑈))⟩ ∈ (𝐷 Func 𝐸))
1917, 18sylibr 234 . 2 (𝜑 → (1st ‘(1st𝑈))(𝐷 Func 𝐸)(2nd ‘(1st𝑈)))
201, 2, 3, 4, 5, 15, 19, 10fucoid 48915 1 (𝜑 → ((𝑈𝑃𝑈)‘( 1𝑈)) = (𝐼‘(𝑂𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cop 4640   class class class wbr 5151   × cxp 5691  cfv 6569  (class class class)co 7438  1st c1st 8020  2nd c2nd 8021  Idccid 17719   Func cfunc 17914   FuncCat cfuc 18006   ×c cxpc 18233  F cfuco 48885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761  ax-cnex 11218  ax-resscn 11219  ax-1cn 11220  ax-icn 11221  ax-addcl 11222  ax-addrcl 11223  ax-mulcl 11224  ax-mulrcl 11225  ax-mulcom 11226  ax-addass 11227  ax-mulass 11228  ax-distr 11229  ax-i2m1 11230  ax-1ne0 11231  ax-1rid 11232  ax-rnegex 11233  ax-rrecex 11234  ax-cnre 11235  ax-pre-lttri 11236  ax-pre-lttrn 11237  ax-pre-ltadd 11238  ax-pre-mulgt0 11239
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-tp 4639  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-1st 8022  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-1o 8514  df-er 8753  df-map 8876  df-ixp 8946  df-en 8994  df-dom 8995  df-sdom 8996  df-fin 8997  df-pnf 11304  df-mnf 11305  df-xr 11306  df-ltxr 11307  df-le 11308  df-sub 11501  df-neg 11502  df-nn 12274  df-2 12336  df-3 12337  df-4 12338  df-5 12339  df-6 12340  df-7 12341  df-8 12342  df-9 12343  df-n0 12534  df-z 12621  df-dec 12741  df-uz 12886  df-fz 13554  df-struct 17190  df-slot 17225  df-ndx 17237  df-base 17255  df-hom 17331  df-cco 17332  df-cat 17722  df-cid 17723  df-func 17918  df-cofu 17920  df-nat 18007  df-fuc 18008  df-xpc 18237  df-fuco 48886
This theorem is referenced by:  fucofunc  48926
  Copyright terms: Public domain W3C validator