Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funfv1st2nd | Structured version Visualization version GIF version |
Description: The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.) |
Ref | Expression |
---|---|
funfv1st2nd | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6352 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | 1st2nd 7742 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝑋 ∈ 𝐹) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
3 | 1, 2 | sylan 583 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
4 | eleq1 2839 | . . . . 5 ⊢ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝑋 ∈ 𝐹 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹)) | |
5 | 4 | adantl 485 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐹 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹)) |
6 | funopfv 6705 | . . . . 5 ⊢ (Fun 𝐹 → (〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) | |
7 | 6 | adantr 484 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
8 | 5, 7 | sylbid 243 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
9 | 8 | impancom 455 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
10 | 3, 9 | mpd 15 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 〈cop 4528 Rel wrel 5529 Fun wfun 6329 ‘cfv 6335 1st c1st 7691 2nd c2nd 7692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fv 6343 df-1st 7693 df-2nd 7694 |
This theorem is referenced by: gsumhashmul 30842 satffunlem 32879 satffunlem1lem1 32880 satffunlem2lem1 32882 |
Copyright terms: Public domain | W3C validator |