MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv1st2nd Structured version   Visualization version   GIF version

Theorem funfv1st2nd 8050
Description: The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.)
Assertion
Ref Expression
funfv1st2nd ((Fun 𝐹𝑋𝐹) → (𝐹‘(1st𝑋)) = (2nd𝑋))

Proof of Theorem funfv1st2nd
StepHypRef Expression
1 funrel 6558 . . 3 (Fun 𝐹 → Rel 𝐹)
2 1st2nd 8043 . . 3 ((Rel 𝐹𝑋𝐹) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
31, 2sylan 580 . 2 ((Fun 𝐹𝑋𝐹) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
4 eleq1 2823 . . . . 5 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐹 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹))
54adantl 481 . . . 4 ((Fun 𝐹𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐹 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹))
6 funopfv 6933 . . . . 5 (Fun 𝐹 → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹 → (𝐹‘(1st𝑋)) = (2nd𝑋)))
76adantr 480 . . . 4 ((Fun 𝐹𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹 → (𝐹‘(1st𝑋)) = (2nd𝑋)))
85, 7sylbid 240 . . 3 ((Fun 𝐹𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐹 → (𝐹‘(1st𝑋)) = (2nd𝑋)))
98impancom 451 . 2 ((Fun 𝐹𝑋𝐹) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐹‘(1st𝑋)) = (2nd𝑋)))
103, 9mpd 15 1 ((Fun 𝐹𝑋𝐹) → (𝐹‘(1st𝑋)) = (2nd𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4612  Rel wrel 5664  Fun wfun 6530  cfv 6536  1st c1st 7991  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-2nd 7994
This theorem is referenced by:  gsumhashmul  33060  satffunlem  35428  satffunlem1lem1  35429  satffunlem2lem1  35431
  Copyright terms: Public domain W3C validator