MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv1st2nd Structured version   Visualization version   GIF version

Theorem funfv1st2nd 7978
Description: The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.)
Assertion
Ref Expression
funfv1st2nd ((Fun 𝐹𝑋𝐹) → (𝐹‘(1st𝑋)) = (2nd𝑋))

Proof of Theorem funfv1st2nd
StepHypRef Expression
1 funrel 6498 . . 3 (Fun 𝐹 → Rel 𝐹)
2 1st2nd 7971 . . 3 ((Rel 𝐹𝑋𝐹) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
31, 2sylan 580 . 2 ((Fun 𝐹𝑋𝐹) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
4 eleq1 2819 . . . . 5 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐹 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹))
54adantl 481 . . . 4 ((Fun 𝐹𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐹 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹))
6 funopfv 6871 . . . . 5 (Fun 𝐹 → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹 → (𝐹‘(1st𝑋)) = (2nd𝑋)))
76adantr 480 . . . 4 ((Fun 𝐹𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹 → (𝐹‘(1st𝑋)) = (2nd𝑋)))
85, 7sylbid 240 . . 3 ((Fun 𝐹𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐹 → (𝐹‘(1st𝑋)) = (2nd𝑋)))
98impancom 451 . 2 ((Fun 𝐹𝑋𝐹) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐹‘(1st𝑋)) = (2nd𝑋)))
103, 9mpd 15 1 ((Fun 𝐹𝑋𝐹) → (𝐹‘(1st𝑋)) = (2nd𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cop 4582  Rel wrel 5621  Fun wfun 6475  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  gsumhashmul  33036  satffunlem  35433  satffunlem1lem1  35434  satffunlem2lem1  35436
  Copyright terms: Public domain W3C validator