![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funfv1st2nd | Structured version Visualization version GIF version |
Description: The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.) |
Ref | Expression |
---|---|
funfv1st2nd | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 6595 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
2 | 1st2nd 8080 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝑋 ∈ 𝐹) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
4 | eleq1 2832 | . . . . 5 ⊢ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝑋 ∈ 𝐹 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹)) | |
5 | 4 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐹 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹)) |
6 | funopfv 6972 | . . . . 5 ⊢ (Fun 𝐹 → (〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
8 | 5, 7 | sylbid 240 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
9 | 8 | impancom 451 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
10 | 3, 9 | mpd 15 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 〈cop 4654 Rel wrel 5705 Fun wfun 6567 ‘cfv 6573 1st c1st 8028 2nd c2nd 8029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: gsumhashmul 33040 satffunlem 35369 satffunlem1lem1 35370 satffunlem2lem1 35372 |
Copyright terms: Public domain | W3C validator |