| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfv1st2nd | Structured version Visualization version GIF version | ||
| Description: The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.) |
| Ref | Expression |
|---|---|
| funfv1st2nd | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6536 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 2 | 1st2nd 8021 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝑋 ∈ 𝐹) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 4 | eleq1 2817 | . . . . 5 ⊢ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝑋 ∈ 𝐹 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹)) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐹 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹)) |
| 6 | funopfv 6913 | . . . . 5 ⊢ (Fun 𝐹 → (〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
| 8 | 5, 7 | sylbid 240 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
| 9 | 8 | impancom 451 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
| 10 | 3, 9 | mpd 15 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 〈cop 4598 Rel wrel 5646 Fun wfun 6508 ‘cfv 6514 1st c1st 7969 2nd c2nd 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-1st 7971 df-2nd 7972 |
| This theorem is referenced by: gsumhashmul 33008 satffunlem 35395 satffunlem1lem1 35396 satffunlem2lem1 35398 |
| Copyright terms: Public domain | W3C validator |