MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funfv1st2nd Structured version   Visualization version   GIF version

Theorem funfv1st2nd 8034
Description: The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.)
Assertion
Ref Expression
funfv1st2nd ((Fun 𝐹𝑋𝐹) → (𝐹‘(1st𝑋)) = (2nd𝑋))

Proof of Theorem funfv1st2nd
StepHypRef Expression
1 funrel 6565 . . 3 (Fun 𝐹 → Rel 𝐹)
2 1st2nd 8027 . . 3 ((Rel 𝐹𝑋𝐹) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
31, 2sylan 580 . 2 ((Fun 𝐹𝑋𝐹) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
4 eleq1 2821 . . . . 5 (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝑋𝐹 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹))
54adantl 482 . . . 4 ((Fun 𝐹𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐹 ↔ ⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹))
6 funopfv 6943 . . . . 5 (Fun 𝐹 → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹 → (𝐹‘(1st𝑋)) = (2nd𝑋)))
76adantr 481 . . . 4 ((Fun 𝐹𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (⟨(1st𝑋), (2nd𝑋)⟩ ∈ 𝐹 → (𝐹‘(1st𝑋)) = (2nd𝑋)))
85, 7sylbid 239 . . 3 ((Fun 𝐹𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩) → (𝑋𝐹 → (𝐹‘(1st𝑋)) = (2nd𝑋)))
98impancom 452 . 2 ((Fun 𝐹𝑋𝐹) → (𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩ → (𝐹‘(1st𝑋)) = (2nd𝑋)))
103, 9mpd 15 1 ((Fun 𝐹𝑋𝐹) → (𝐹‘(1st𝑋)) = (2nd𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  cop 4634  Rel wrel 5681  Fun wfun 6537  cfv 6543  1st c1st 7975  2nd c2nd 7976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-1st 7977  df-2nd 7978
This theorem is referenced by:  gsumhashmul  32249  satffunlem  34461  satffunlem1lem1  34462  satffunlem2lem1  34464
  Copyright terms: Public domain W3C validator