| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funfv1st2nd | Structured version Visualization version GIF version | ||
| Description: The function value for the first component of an ordered pair is the second component of the ordered pair. (Contributed by AV, 17-Oct-2023.) |
| Ref | Expression |
|---|---|
| funfv1st2nd | ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funrel 6498 | . . 3 ⊢ (Fun 𝐹 → Rel 𝐹) | |
| 2 | 1st2nd 7971 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝑋 ∈ 𝐹) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) |
| 4 | eleq1 2819 | . . . . 5 ⊢ (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝑋 ∈ 𝐹 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹)) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐹 ↔ 〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹)) |
| 6 | funopfv 6871 | . . . . 5 ⊢ (Fun 𝐹 → (〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (〈(1st ‘𝑋), (2nd ‘𝑋)〉 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
| 8 | 5, 7 | sylbid 240 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉) → (𝑋 ∈ 𝐹 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
| 9 | 8 | impancom 451 | . 2 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝑋 = 〈(1st ‘𝑋), (2nd ‘𝑋)〉 → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋))) |
| 10 | 3, 9 | mpd 15 | 1 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ 𝐹) → (𝐹‘(1st ‘𝑋)) = (2nd ‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 〈cop 4582 Rel wrel 5621 Fun wfun 6475 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: gsumhashmul 33036 satffunlem 35433 satffunlem1lem1 35434 satffunlem2lem1 35436 |
| Copyright terms: Public domain | W3C validator |