![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvimacnvi | Structured version Visualization version GIF version |
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
fvimacnvi | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4806 | . . 3 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → {𝐴} ⊆ (◡𝐹 “ 𝐵)) | |
2 | funimass2 6625 | . . 3 ⊢ ((Fun 𝐹 ∧ {𝐴} ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) |
4 | fvex 6898 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
5 | 4 | snss 4784 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
6 | cnvimass 6074 | . . . . . 6 ⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 | |
7 | 6 | sseli 3973 | . . . . 5 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → 𝐴 ∈ dom 𝐹) |
8 | funfn 6572 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
9 | fnsnfv 6964 | . . . . . 6 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
10 | 8, 9 | sylanb 580 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
11 | 7, 10 | sylan2 592 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
12 | 11 | sseq1d 4008 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ({(𝐹‘𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
13 | 5, 12 | bitrid 283 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
14 | 3, 13 | mpbird 257 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⊆ wss 3943 {csn 4623 ◡ccnv 5668 dom cdm 5669 “ cima 5672 Fun wfun 6531 Fn wfn 6532 ‘cfv 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-fv 6545 |
This theorem is referenced by: fvimacnv 7048 elpreima 7053 iinpreima 7064 lmhmpreima 20896 mpfind 22012 ofco2 22308 carsggect 33847 bj-fvimacnv0 36674 fcores 46349 |
Copyright terms: Public domain | W3C validator |