MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvimacnvi Structured version   Visualization version   GIF version

Theorem fvimacnvi 7024
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.)
Assertion
Ref Expression
fvimacnvi ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)

Proof of Theorem fvimacnvi
StepHypRef Expression
1 snssi 4772 . . 3 (𝐴 ∈ (𝐹𝐵) → {𝐴} ⊆ (𝐹𝐵))
2 funimass2 6599 . . 3 ((Fun 𝐹 ∧ {𝐴} ⊆ (𝐹𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵)
31, 2sylan2 593 . 2 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵)
4 fvex 6871 . . . 4 (𝐹𝐴) ∈ V
54snss 4749 . . 3 ((𝐹𝐴) ∈ 𝐵 ↔ {(𝐹𝐴)} ⊆ 𝐵)
6 cnvimass 6053 . . . . . 6 (𝐹𝐵) ⊆ dom 𝐹
76sseli 3942 . . . . 5 (𝐴 ∈ (𝐹𝐵) → 𝐴 ∈ dom 𝐹)
8 funfn 6546 . . . . . 6 (Fun 𝐹𝐹 Fn dom 𝐹)
9 fnsnfv 6940 . . . . . 6 ((𝐹 Fn dom 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
108, 9sylanb 581 . . . . 5 ((Fun 𝐹𝐴 ∈ dom 𝐹) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
117, 10sylan2 593 . . . 4 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → {(𝐹𝐴)} = (𝐹 “ {𝐴}))
1211sseq1d 3978 . . 3 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ({(𝐹𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
135, 12bitrid 283 . 2 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ((𝐹𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵))
143, 13mpbird 257 1 ((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → (𝐹𝐴) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3914  {csn 4589  ccnv 5637  dom cdm 5638  cima 5641  Fun wfun 6505   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  fvimacnv  7025  elpreima  7030  iinpreima  7041  lmhmpreima  20955  mpfind  22014  ofco2  22338  elrgspnsubrunlem2  33199  carsggect  34309  bj-fvimacnv0  37274  fcores  47068
  Copyright terms: Public domain W3C validator