| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvimacnvi | Structured version Visualization version GIF version | ||
| Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.) |
| Ref | Expression |
|---|---|
| fvimacnvi | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4760 | . . 3 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → {𝐴} ⊆ (◡𝐹 “ 𝐵)) | |
| 2 | funimass2 6564 | . . 3 ⊢ ((Fun 𝐹 ∧ {𝐴} ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) | |
| 3 | 1, 2 | sylan2 593 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) |
| 4 | fvex 6835 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 5 | 4 | snss 4737 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
| 6 | cnvimass 6031 | . . . . . 6 ⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 | |
| 7 | 6 | sseli 3930 | . . . . 5 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → 𝐴 ∈ dom 𝐹) |
| 8 | funfn 6511 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 9 | fnsnfv 6901 | . . . . . 6 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
| 10 | 8, 9 | sylanb 581 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 11 | 7, 10 | sylan2 593 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
| 12 | 11 | sseq1d 3966 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ({(𝐹‘𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
| 13 | 5, 12 | bitrid 283 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
| 14 | 3, 13 | mpbird 257 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 {csn 4576 ◡ccnv 5615 dom cdm 5616 “ cima 5619 Fun wfun 6475 Fn wfn 6476 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 |
| This theorem is referenced by: fvimacnv 6986 elpreima 6991 iinpreima 7002 lmhmpreima 20983 mpfind 22043 ofco2 22367 elrgspnsubrunlem2 33213 carsggect 34329 bj-fvimacnv0 37326 fcores 47104 |
| Copyright terms: Public domain | W3C validator |