Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fvimacnvi | Structured version Visualization version GIF version |
Description: A member of a preimage is a function value argument. (Contributed by NM, 4-May-2007.) |
Ref | Expression |
---|---|
fvimacnvi | ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4746 | . . 3 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → {𝐴} ⊆ (◡𝐹 “ 𝐵)) | |
2 | funimass2 6513 | . . 3 ⊢ ((Fun 𝐹 ∧ {𝐴} ⊆ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) | |
3 | 1, 2 | sylan2 592 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹 “ {𝐴}) ⊆ 𝐵) |
4 | fvex 6781 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
5 | 4 | snss 4724 | . . 3 ⊢ ((𝐹‘𝐴) ∈ 𝐵 ↔ {(𝐹‘𝐴)} ⊆ 𝐵) |
6 | cnvimass 5986 | . . . . . 6 ⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 | |
7 | 6 | sseli 3921 | . . . . 5 ⊢ (𝐴 ∈ (◡𝐹 “ 𝐵) → 𝐴 ∈ dom 𝐹) |
8 | funfn 6460 | . . . . . 6 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
9 | fnsnfv 6841 | . . . . . 6 ⊢ ((𝐹 Fn dom 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) | |
10 | 8, 9 | sylanb 580 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
11 | 7, 10 | sylan2 592 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → {(𝐹‘𝐴)} = (𝐹 “ {𝐴})) |
12 | 11 | sseq1d 3956 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ({(𝐹‘𝐴)} ⊆ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
13 | 5, 12 | syl5bb 282 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → ((𝐹‘𝐴) ∈ 𝐵 ↔ (𝐹 “ {𝐴}) ⊆ 𝐵)) |
14 | 3, 13 | mpbird 256 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (◡𝐹 “ 𝐵)) → (𝐹‘𝐴) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 {csn 4566 ◡ccnv 5587 dom cdm 5588 “ cima 5591 Fun wfun 6424 Fn wfn 6425 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-fv 6438 |
This theorem is referenced by: fvimacnv 6924 elpreima 6929 iinpreima 6940 lmhmpreima 20291 mpfind 21298 ofco2 21581 carsggect 32264 bj-fvimacnv0 35436 fcores 44512 |
Copyright terms: Public domain | W3C validator |