MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmlsp Structured version   Visualization version   GIF version

Theorem lmhmlsp 21071
Description: Homomorphisms preserve spans. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
lmhmlsp.v 𝑉 = (Base‘𝑆)
lmhmlsp.k 𝐾 = (LSpan‘𝑆)
lmhmlsp.l 𝐿 = (LSpan‘𝑇)
Assertion
Ref Expression
lmhmlsp ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐹 “ (𝐾𝑈)) = (𝐿‘(𝐹𝑈)))

Proof of Theorem lmhmlsp
StepHypRef Expression
1 lmhmlsp.v . . . . . 6 𝑉 = (Base‘𝑆)
2 eqid 2740 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
31, 2lmhmf 21056 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇))
43adantr 480 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → 𝐹:𝑉⟶(Base‘𝑇))
54ffund 6751 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → Fun 𝐹)
6 lmhmlmod1 21055 . . . . 5 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
76adantr 480 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → 𝑆 ∈ LMod)
8 lmhmlmod2 21054 . . . . . . 7 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
98adantr 480 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → 𝑇 ∈ LMod)
10 imassrn 6100 . . . . . . 7 (𝐹𝑈) ⊆ ran 𝐹
114frnd 6755 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → ran 𝐹 ⊆ (Base‘𝑇))
1210, 11sstrid 4020 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐹𝑈) ⊆ (Base‘𝑇))
13 eqid 2740 . . . . . . 7 (LSubSp‘𝑇) = (LSubSp‘𝑇)
14 lmhmlsp.l . . . . . . 7 𝐿 = (LSpan‘𝑇)
152, 13, 14lspcl 20997 . . . . . 6 ((𝑇 ∈ LMod ∧ (𝐹𝑈) ⊆ (Base‘𝑇)) → (𝐿‘(𝐹𝑈)) ∈ (LSubSp‘𝑇))
169, 12, 15syl2anc 583 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐿‘(𝐹𝑈)) ∈ (LSubSp‘𝑇))
17 eqid 2740 . . . . . 6 (LSubSp‘𝑆) = (LSubSp‘𝑆)
1817, 13lmhmpreima 21070 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝐿‘(𝐹𝑈)) ∈ (LSubSp‘𝑇)) → (𝐹 “ (𝐿‘(𝐹𝑈))) ∈ (LSubSp‘𝑆))
1916, 18syldan 590 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐹 “ (𝐿‘(𝐹𝑈))) ∈ (LSubSp‘𝑆))
20 incom 4230 . . . . . . 7 (dom 𝐹𝑈) = (𝑈 ∩ dom 𝐹)
21 simpr 484 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → 𝑈𝑉)
224fdmd 6757 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → dom 𝐹 = 𝑉)
2321, 22sseqtrrd 4050 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → 𝑈 ⊆ dom 𝐹)
24 dfss2 3994 . . . . . . . 8 (𝑈 ⊆ dom 𝐹 ↔ (𝑈 ∩ dom 𝐹) = 𝑈)
2523, 24sylib 218 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝑈 ∩ dom 𝐹) = 𝑈)
2620, 25eqtr2id 2793 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → 𝑈 = (dom 𝐹𝑈))
27 dminss 6184 . . . . . 6 (dom 𝐹𝑈) ⊆ (𝐹 “ (𝐹𝑈))
2826, 27eqsstrdi 4063 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → 𝑈 ⊆ (𝐹 “ (𝐹𝑈)))
292, 14lspssid 21006 . . . . . . 7 ((𝑇 ∈ LMod ∧ (𝐹𝑈) ⊆ (Base‘𝑇)) → (𝐹𝑈) ⊆ (𝐿‘(𝐹𝑈)))
309, 12, 29syl2anc 583 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐹𝑈) ⊆ (𝐿‘(𝐹𝑈)))
31 imass2 6132 . . . . . 6 ((𝐹𝑈) ⊆ (𝐿‘(𝐹𝑈)) → (𝐹 “ (𝐹𝑈)) ⊆ (𝐹 “ (𝐿‘(𝐹𝑈))))
3230, 31syl 17 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐹 “ (𝐹𝑈)) ⊆ (𝐹 “ (𝐿‘(𝐹𝑈))))
3328, 32sstrd 4019 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → 𝑈 ⊆ (𝐹 “ (𝐿‘(𝐹𝑈))))
34 lmhmlsp.k . . . . 5 𝐾 = (LSpan‘𝑆)
3517, 34lspssp 21009 . . . 4 ((𝑆 ∈ LMod ∧ (𝐹 “ (𝐿‘(𝐹𝑈))) ∈ (LSubSp‘𝑆) ∧ 𝑈 ⊆ (𝐹 “ (𝐿‘(𝐹𝑈)))) → (𝐾𝑈) ⊆ (𝐹 “ (𝐿‘(𝐹𝑈))))
367, 19, 33, 35syl3anc 1371 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐾𝑈) ⊆ (𝐹 “ (𝐿‘(𝐹𝑈))))
37 funimass2 6661 . . 3 ((Fun 𝐹 ∧ (𝐾𝑈) ⊆ (𝐹 “ (𝐿‘(𝐹𝑈)))) → (𝐹 “ (𝐾𝑈)) ⊆ (𝐿‘(𝐹𝑈)))
385, 36, 37syl2anc 583 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐹 “ (𝐾𝑈)) ⊆ (𝐿‘(𝐹𝑈)))
391, 17, 34lspcl 20997 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑈𝑉) → (𝐾𝑈) ∈ (LSubSp‘𝑆))
407, 21, 39syl2anc 583 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐾𝑈) ∈ (LSubSp‘𝑆))
4117, 13lmhmima 21069 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝐾𝑈) ∈ (LSubSp‘𝑆)) → (𝐹 “ (𝐾𝑈)) ∈ (LSubSp‘𝑇))
4240, 41syldan 590 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐹 “ (𝐾𝑈)) ∈ (LSubSp‘𝑇))
431, 34lspssid 21006 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑈𝑉) → 𝑈 ⊆ (𝐾𝑈))
447, 21, 43syl2anc 583 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → 𝑈 ⊆ (𝐾𝑈))
45 imass2 6132 . . . 4 (𝑈 ⊆ (𝐾𝑈) → (𝐹𝑈) ⊆ (𝐹 “ (𝐾𝑈)))
4644, 45syl 17 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐹𝑈) ⊆ (𝐹 “ (𝐾𝑈)))
4713, 14lspssp 21009 . . 3 ((𝑇 ∈ LMod ∧ (𝐹 “ (𝐾𝑈)) ∈ (LSubSp‘𝑇) ∧ (𝐹𝑈) ⊆ (𝐹 “ (𝐾𝑈))) → (𝐿‘(𝐹𝑈)) ⊆ (𝐹 “ (𝐾𝑈)))
489, 42, 46, 47syl3anc 1371 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐿‘(𝐹𝑈)) ⊆ (𝐹 “ (𝐾𝑈)))
4938, 48eqssd 4026 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈𝑉) → (𝐹 “ (𝐾𝑈)) = (𝐿‘(𝐹𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  Basecbs 17258  LModclmod 20880  LSubSpclss 20952  LSpanclspn 20992   LMHom clmhm 21041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-ghm 19253  df-mgp 20162  df-ur 20209  df-ring 20262  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044
This theorem is referenced by:  frlmup3  21843  lindfmm  21870  lmimlbs  21879  lmhmfgima  43041  lmhmfgsplit  43043
  Copyright terms: Public domain W3C validator