Proof of Theorem lmhmlsp
| Step | Hyp | Ref
| Expression |
| 1 | | lmhmlsp.v |
. . . . . 6
⊢ 𝑉 = (Base‘𝑆) |
| 2 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 3 | 1, 2 | lmhmf 21033 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹:𝑉⟶(Base‘𝑇)) |
| 4 | 3 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → 𝐹:𝑉⟶(Base‘𝑇)) |
| 5 | 4 | ffund 6740 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → Fun 𝐹) |
| 6 | | lmhmlmod1 21032 |
. . . . 5
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → 𝑆 ∈ LMod) |
| 8 | | lmhmlmod2 21031 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
| 9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → 𝑇 ∈ LMod) |
| 10 | | imassrn 6089 |
. . . . . . 7
⊢ (𝐹 “ 𝑈) ⊆ ran 𝐹 |
| 11 | 4 | frnd 6744 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → ran 𝐹 ⊆ (Base‘𝑇)) |
| 12 | 10, 11 | sstrid 3995 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐹 “ 𝑈) ⊆ (Base‘𝑇)) |
| 13 | | eqid 2737 |
. . . . . . 7
⊢
(LSubSp‘𝑇) =
(LSubSp‘𝑇) |
| 14 | | lmhmlsp.l |
. . . . . . 7
⊢ 𝐿 = (LSpan‘𝑇) |
| 15 | 2, 13, 14 | lspcl 20974 |
. . . . . 6
⊢ ((𝑇 ∈ LMod ∧ (𝐹 “ 𝑈) ⊆ (Base‘𝑇)) → (𝐿‘(𝐹 “ 𝑈)) ∈ (LSubSp‘𝑇)) |
| 16 | 9, 12, 15 | syl2anc 584 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐿‘(𝐹 “ 𝑈)) ∈ (LSubSp‘𝑇)) |
| 17 | | eqid 2737 |
. . . . . 6
⊢
(LSubSp‘𝑆) =
(LSubSp‘𝑆) |
| 18 | 17, 13 | lmhmpreima 21047 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝐿‘(𝐹 “ 𝑈)) ∈ (LSubSp‘𝑇)) → (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈))) ∈ (LSubSp‘𝑆)) |
| 19 | 16, 18 | syldan 591 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈))) ∈ (LSubSp‘𝑆)) |
| 20 | | incom 4209 |
. . . . . . 7
⊢ (dom
𝐹 ∩ 𝑈) = (𝑈 ∩ dom 𝐹) |
| 21 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ 𝑉) |
| 22 | 4 | fdmd 6746 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → dom 𝐹 = 𝑉) |
| 23 | 21, 22 | sseqtrrd 4021 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ dom 𝐹) |
| 24 | | dfss2 3969 |
. . . . . . . 8
⊢ (𝑈 ⊆ dom 𝐹 ↔ (𝑈 ∩ dom 𝐹) = 𝑈) |
| 25 | 23, 24 | sylib 218 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝑈 ∩ dom 𝐹) = 𝑈) |
| 26 | 20, 25 | eqtr2id 2790 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → 𝑈 = (dom 𝐹 ∩ 𝑈)) |
| 27 | | dminss 6173 |
. . . . . 6
⊢ (dom
𝐹 ∩ 𝑈) ⊆ (◡𝐹 “ (𝐹 “ 𝑈)) |
| 28 | 26, 27 | eqsstrdi 4028 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (◡𝐹 “ (𝐹 “ 𝑈))) |
| 29 | 2, 14 | lspssid 20983 |
. . . . . . 7
⊢ ((𝑇 ∈ LMod ∧ (𝐹 “ 𝑈) ⊆ (Base‘𝑇)) → (𝐹 “ 𝑈) ⊆ (𝐿‘(𝐹 “ 𝑈))) |
| 30 | 9, 12, 29 | syl2anc 584 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐹 “ 𝑈) ⊆ (𝐿‘(𝐹 “ 𝑈))) |
| 31 | | imass2 6120 |
. . . . . 6
⊢ ((𝐹 “ 𝑈) ⊆ (𝐿‘(𝐹 “ 𝑈)) → (◡𝐹 “ (𝐹 “ 𝑈)) ⊆ (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈)))) |
| 32 | 30, 31 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (◡𝐹 “ (𝐹 “ 𝑈)) ⊆ (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈)))) |
| 33 | 28, 32 | sstrd 3994 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈)))) |
| 34 | | lmhmlsp.k |
. . . . 5
⊢ 𝐾 = (LSpan‘𝑆) |
| 35 | 17, 34 | lspssp 20986 |
. . . 4
⊢ ((𝑆 ∈ LMod ∧ (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈))) ∈ (LSubSp‘𝑆) ∧ 𝑈 ⊆ (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈)))) → (𝐾‘𝑈) ⊆ (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈)))) |
| 36 | 7, 19, 33, 35 | syl3anc 1373 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐾‘𝑈) ⊆ (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈)))) |
| 37 | | funimass2 6649 |
. . 3
⊢ ((Fun
𝐹 ∧ (𝐾‘𝑈) ⊆ (◡𝐹 “ (𝐿‘(𝐹 “ 𝑈)))) → (𝐹 “ (𝐾‘𝑈)) ⊆ (𝐿‘(𝐹 “ 𝑈))) |
| 38 | 5, 36, 37 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐹 “ (𝐾‘𝑈)) ⊆ (𝐿‘(𝐹 “ 𝑈))) |
| 39 | 1, 17, 34 | lspcl 20974 |
. . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → (𝐾‘𝑈) ∈ (LSubSp‘𝑆)) |
| 40 | 7, 21, 39 | syl2anc 584 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐾‘𝑈) ∈ (LSubSp‘𝑆)) |
| 41 | 17, 13 | lmhmima 21046 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝐾‘𝑈) ∈ (LSubSp‘𝑆)) → (𝐹 “ (𝐾‘𝑈)) ∈ (LSubSp‘𝑇)) |
| 42 | 40, 41 | syldan 591 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐹 “ (𝐾‘𝑈)) ∈ (LSubSp‘𝑇)) |
| 43 | 1, 34 | lspssid 20983 |
. . . . 5
⊢ ((𝑆 ∈ LMod ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝐾‘𝑈)) |
| 44 | 7, 21, 43 | syl2anc 584 |
. . . 4
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → 𝑈 ⊆ (𝐾‘𝑈)) |
| 45 | | imass2 6120 |
. . . 4
⊢ (𝑈 ⊆ (𝐾‘𝑈) → (𝐹 “ 𝑈) ⊆ (𝐹 “ (𝐾‘𝑈))) |
| 46 | 44, 45 | syl 17 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐹 “ 𝑈) ⊆ (𝐹 “ (𝐾‘𝑈))) |
| 47 | 13, 14 | lspssp 20986 |
. . 3
⊢ ((𝑇 ∈ LMod ∧ (𝐹 “ (𝐾‘𝑈)) ∈ (LSubSp‘𝑇) ∧ (𝐹 “ 𝑈) ⊆ (𝐹 “ (𝐾‘𝑈))) → (𝐿‘(𝐹 “ 𝑈)) ⊆ (𝐹 “ (𝐾‘𝑈))) |
| 48 | 9, 42, 46, 47 | syl3anc 1373 |
. 2
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐿‘(𝐹 “ 𝑈)) ⊆ (𝐹 “ (𝐾‘𝑈))) |
| 49 | 38, 48 | eqssd 4001 |
1
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑈 ⊆ 𝑉) → (𝐹 “ (𝐾‘𝑈)) = (𝐿‘(𝐹 “ 𝑈))) |