MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem4 Structured version   Visualization version   GIF version

Theorem fmfnfmlem4 23911
Description: Lemma for fmfnfm 23912. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem4 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝐹,𝑠,𝑡,𝑥   𝐿,𝑠,𝑡,𝑥   𝜑,𝑠,𝑡,𝑥   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑥

Proof of Theorem fmfnfmlem4
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . 4 (𝜑𝐿 ∈ (Fil‘𝑋))
2 filelss 23806 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡𝐿) → 𝑡𝑋)
32ex 412 . . . 4 (𝐿 ∈ (Fil‘𝑋) → (𝑡𝐿𝑡𝑋))
41, 3syl 17 . . 3 (𝜑 → (𝑡𝐿𝑡𝑋))
5 fmfnfm.b . . . . . . . . 9 (𝜑𝐵 ∈ (fBas‘𝑌))
6 mptexg 7223 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
7 rnexg 7906 . . . . . . . . . . 11 ((𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
86, 7syl 17 . . . . . . . . . 10 (𝐿 ∈ (Fil‘𝑋) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
91, 8syl 17 . . . . . . . . 9 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
10 unexg 7745 . . . . . . . . 9 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
115, 9, 10syl2anc 584 . . . . . . . 8 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
12 ssfii 9441 . . . . . . . . 9 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1312unssbd 4174 . . . . . . . 8 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1411, 13syl 17 . . . . . . 7 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1514adantr 480 . . . . . 6 ((𝜑𝑡𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
16 eqid 2734 . . . . . . . . 9 (𝐹𝑡) = (𝐹𝑡)
17 imaeq2 6054 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
1817rspceeqv 3628 . . . . . . . . 9 ((𝑡𝐿 ∧ (𝐹𝑡) = (𝐹𝑡)) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
1916, 18mpan2 691 . . . . . . . 8 (𝑡𝐿 → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
2019adantl 481 . . . . . . 7 ((𝜑𝑡𝐿) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
21 elfvdm 6923 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
225, 21syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ dom fBas)
23 cnvimass 6080 . . . . . . . . . . 11 (𝐹𝑡) ⊆ dom 𝐹
24 fmfnfm.f . . . . . . . . . . 11 (𝜑𝐹:𝑌𝑋)
2523, 24fssdm 6735 . . . . . . . . . 10 (𝜑 → (𝐹𝑡) ⊆ 𝑌)
2622, 25ssexd 5304 . . . . . . . . 9 (𝜑 → (𝐹𝑡) ∈ V)
2726adantr 480 . . . . . . . 8 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ V)
28 eqid 2734 . . . . . . . . 9 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2928elrnmpt 5949 . . . . . . . 8 ((𝐹𝑡) ∈ V → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3027, 29syl 17 . . . . . . 7 ((𝜑𝑡𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3120, 30mpbird 257 . . . . . 6 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
3215, 31sseldd 3964 . . . . 5 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
33 ffun 6719 . . . . . . . 8 (𝐹:𝑌𝑋 → Fun 𝐹)
34 ssid 3986 . . . . . . . 8 (𝐹𝑡) ⊆ (𝐹𝑡)
35 funimass2 6629 . . . . . . . 8 ((Fun 𝐹 ∧ (𝐹𝑡) ⊆ (𝐹𝑡)) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3633, 34, 35sylancl 586 . . . . . . 7 (𝐹:𝑌𝑋 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3724, 36syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3837adantr 480 . . . . 5 ((𝜑𝑡𝐿) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
39 imaeq2 6054 . . . . . . 7 (𝑠 = (𝐹𝑡) → (𝐹𝑠) = (𝐹 “ (𝐹𝑡)))
4039sseq1d 3995 . . . . . 6 (𝑠 = (𝐹𝑡) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡))
4140rspcev 3605 . . . . 5 (((𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∧ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4232, 38, 41syl2anc 584 . . . 4 ((𝜑𝑡𝐿) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4342ex 412 . . 3 (𝜑 → (𝑡𝐿 → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡))
444, 43jcad 512 . 2 (𝜑 → (𝑡𝐿 → (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
45 elfiun 9452 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
465, 9, 45syl2anc 584 . . . . 5 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
47 fmfnfm.fm . . . . . . 7 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
485, 1, 24, 47fmfnfmlem1 23908 . . . . . 6 (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
495, 1, 24, 47fmfnfmlem3 23910 . . . . . . . 8 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
5049eleq2d 2819 . . . . . . 7 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
5128elrnmpt 5949 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
5251elv 3468 . . . . . . . 8 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
535, 1, 24, 47fmfnfmlem2 23909 . . . . . . . 8 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5452, 53biimtrid 242 . . . . . . 7 (𝜑 → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5550, 54sylbid 240 . . . . . 6 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5649eleq2d 2819 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
5728elrnmpt 5949 . . . . . . . . . . . . 13 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
5857elv 3468 . . . . . . . . . . . 12 (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥))
5956, 58bitrdi 287 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
6059adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
61 fbssfi 23791 . . . . . . . . . . . 12 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
625, 61sylan 580 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
631ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
641adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝐿 ∈ (Fil‘𝑋))
6547adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
66 filtop 23809 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
671, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋𝐿)
6867, 5, 243jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
70 ssfg 23826 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
715, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
7271sselda 3963 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
73 eqid 2734 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑌filGen𝐵) = (𝑌filGen𝐵)
7473imaelfm 23905 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
7569, 72, 74syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
7665, 75sseldd 3964 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
7776adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐹𝑠) ∈ 𝐿)
7864, 77jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
79 filin 23808 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
80793expa 1118 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8178, 80sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8281adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
83 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝑋)
84 elin 3947 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥))
8524, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Fun 𝐹)
86 fvelima 6954 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹𝑤 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤)
8786ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Fun 𝐹 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
8885, 87syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
8988ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
9085ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → Fun 𝐹)
91 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → 𝑠𝑧)
92 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦𝑠)
93 ssel2 3958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑠𝑧𝑦𝑠) → 𝑦𝑧)
9491, 92, 93syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦𝑧)
9585ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → Fun 𝐹)
96 fbelss 23787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
975, 96sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑠𝐵) → 𝑠𝑌)
9824fdmd 6726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → dom 𝐹 = 𝑌)
9998adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
10097, 99sseqtrrd 4001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
101100adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝑠 ⊆ dom 𝐹)
102101sselda 3963 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
103 fvimacnv 7053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
10495, 102, 103syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
105104biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
106105impr 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦 ∈ (𝐹𝑥))
107106ad2ant2rl 749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝐹𝑥))
10894, 107elind 4180 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝑧 ∩ (𝐹𝑥)))
109 inss2 4218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∩ (𝐹𝑥)) ⊆ (𝐹𝑥)
110 cnvimass 6080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹𝑥) ⊆ dom 𝐹
111109, 110sstri 3973 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹
112 funfvima2 7233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun 𝐹 ∧ (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹) → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
113111, 112mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝐹 → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
11490, 108, 113sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
115114anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
116115expr 456 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
117 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ 𝑥𝑤𝑥))
118 eleq1 2821 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ↔ 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
119117, 118imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑤 → (((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))) ↔ (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
120116, 119syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
121120rexlimdva 3142 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (∃𝑦𝑠 (𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
12289, 121syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
123122impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → ((𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
12484, 123biimtrid 242 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
125124adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
126125ssrdv 3969 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
127 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡)
128126, 127sstrd 3974 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)
129 filss 23807 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ (Fil‘𝑋) ∧ (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿𝑡𝑋 ∧ ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)) → 𝑡𝐿)
13063, 82, 83, 128, 129syl13anc 1373 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝐿)
131130exp32 420 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
132 ineq2 4194 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹𝑥) → (𝑧𝑤) = (𝑧 ∩ (𝐹𝑥)))
133132imaeq2d 6058 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹𝑥) → (𝐹 “ (𝑧𝑤)) = (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
134133sseq1d 3995 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 ↔ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡))
135134imbi1d 341 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝑥) → (((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
136131, 135syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
137136rexlimdva 3142 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
138137rexlimdvaa 3143 . . . . . . . . . . . 12 (𝜑 → (∃𝑠𝐵 𝑠𝑧 → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))))
139138imp 406 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑠𝐵 𝑠𝑧) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14062, 139syldan 591 . . . . . . . . . 10 ((𝜑𝑧 ∈ (fi‘𝐵)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14160, 140sylbid 240 . . . . . . . . 9 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
142141impr 454 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
143 imaeq2 6054 . . . . . . . . . 10 (𝑠 = (𝑧𝑤) → (𝐹𝑠) = (𝐹 “ (𝑧𝑤)))
144143sseq1d 3995 . . . . . . . . 9 (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝑧𝑤)) ⊆ 𝑡))
145144imbi1d 341 . . . . . . . 8 (𝑠 = (𝑧𝑤) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
146142, 145syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
147146rexlimdvva 3200 . . . . . 6 (𝜑 → (∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14848, 55, 1473jaod 1430 . . . . 5 (𝜑 → ((𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14946, 148sylbid 240 . . . 4 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
150149rexlimdv 3140 . . 3 (𝜑 → (∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
151150impcomd 411 . 2 (𝜑 → ((𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡) → 𝑡𝐿))
15244, 151impbid 212 1 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  Vcvv 3463  cun 3929  cin 3930  wss 3931  cmpt 5205  ccnv 5664  dom cdm 5665  ran crn 5666  cima 5668  Fun wfun 6535  wf 6537  cfv 6541  (class class class)co 7413  ficfi 9432  fBascfbas 21314  filGencfg 21315  Filcfil 23799   FilMap cfm 23887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1o 8488  df-2o 8489  df-en 8968  df-fin 8971  df-fi 9433  df-fbas 21323  df-fg 21324  df-fil 23800  df-fm 23892
This theorem is referenced by:  fmfnfm  23912
  Copyright terms: Public domain W3C validator