MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem4 Structured version   Visualization version   GIF version

Theorem fmfnfmlem4 23851
Description: Lemma for fmfnfm 23852. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem4 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝐹,𝑠,𝑡,𝑥   𝐿,𝑠,𝑡,𝑥   𝜑,𝑠,𝑡,𝑥   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑥

Proof of Theorem fmfnfmlem4
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . 4 (𝜑𝐿 ∈ (Fil‘𝑋))
2 filelss 23746 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡𝐿) → 𝑡𝑋)
32ex 412 . . . 4 (𝐿 ∈ (Fil‘𝑋) → (𝑡𝐿𝑡𝑋))
41, 3syl 17 . . 3 (𝜑 → (𝑡𝐿𝑡𝑋))
5 fmfnfm.b . . . . . . . . 9 (𝜑𝐵 ∈ (fBas‘𝑌))
6 mptexg 7198 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
7 rnexg 7881 . . . . . . . . . . 11 ((𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
86, 7syl 17 . . . . . . . . . 10 (𝐿 ∈ (Fil‘𝑋) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
91, 8syl 17 . . . . . . . . 9 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
10 unexg 7722 . . . . . . . . 9 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
115, 9, 10syl2anc 584 . . . . . . . 8 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
12 ssfii 9377 . . . . . . . . 9 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1312unssbd 4160 . . . . . . . 8 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1411, 13syl 17 . . . . . . 7 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1514adantr 480 . . . . . 6 ((𝜑𝑡𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
16 eqid 2730 . . . . . . . . 9 (𝐹𝑡) = (𝐹𝑡)
17 imaeq2 6030 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
1817rspceeqv 3614 . . . . . . . . 9 ((𝑡𝐿 ∧ (𝐹𝑡) = (𝐹𝑡)) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
1916, 18mpan2 691 . . . . . . . 8 (𝑡𝐿 → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
2019adantl 481 . . . . . . 7 ((𝜑𝑡𝐿) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
21 elfvdm 6898 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
225, 21syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ dom fBas)
23 cnvimass 6056 . . . . . . . . . . 11 (𝐹𝑡) ⊆ dom 𝐹
24 fmfnfm.f . . . . . . . . . . 11 (𝜑𝐹:𝑌𝑋)
2523, 24fssdm 6710 . . . . . . . . . 10 (𝜑 → (𝐹𝑡) ⊆ 𝑌)
2622, 25ssexd 5282 . . . . . . . . 9 (𝜑 → (𝐹𝑡) ∈ V)
2726adantr 480 . . . . . . . 8 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ V)
28 eqid 2730 . . . . . . . . 9 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2928elrnmpt 5925 . . . . . . . 8 ((𝐹𝑡) ∈ V → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3027, 29syl 17 . . . . . . 7 ((𝜑𝑡𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3120, 30mpbird 257 . . . . . 6 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
3215, 31sseldd 3950 . . . . 5 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
33 ffun 6694 . . . . . . . 8 (𝐹:𝑌𝑋 → Fun 𝐹)
34 ssid 3972 . . . . . . . 8 (𝐹𝑡) ⊆ (𝐹𝑡)
35 funimass2 6602 . . . . . . . 8 ((Fun 𝐹 ∧ (𝐹𝑡) ⊆ (𝐹𝑡)) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3633, 34, 35sylancl 586 . . . . . . 7 (𝐹:𝑌𝑋 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3724, 36syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3837adantr 480 . . . . 5 ((𝜑𝑡𝐿) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
39 imaeq2 6030 . . . . . . 7 (𝑠 = (𝐹𝑡) → (𝐹𝑠) = (𝐹 “ (𝐹𝑡)))
4039sseq1d 3981 . . . . . 6 (𝑠 = (𝐹𝑡) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡))
4140rspcev 3591 . . . . 5 (((𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∧ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4232, 38, 41syl2anc 584 . . . 4 ((𝜑𝑡𝐿) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4342ex 412 . . 3 (𝜑 → (𝑡𝐿 → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡))
444, 43jcad 512 . 2 (𝜑 → (𝑡𝐿 → (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
45 elfiun 9388 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
465, 9, 45syl2anc 584 . . . . 5 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
47 fmfnfm.fm . . . . . . 7 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
485, 1, 24, 47fmfnfmlem1 23848 . . . . . 6 (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
495, 1, 24, 47fmfnfmlem3 23850 . . . . . . . 8 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
5049eleq2d 2815 . . . . . . 7 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
5128elrnmpt 5925 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
5251elv 3455 . . . . . . . 8 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
535, 1, 24, 47fmfnfmlem2 23849 . . . . . . . 8 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5452, 53biimtrid 242 . . . . . . 7 (𝜑 → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5550, 54sylbid 240 . . . . . 6 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5649eleq2d 2815 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
5728elrnmpt 5925 . . . . . . . . . . . . 13 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
5857elv 3455 . . . . . . . . . . . 12 (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥))
5956, 58bitrdi 287 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
6059adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
61 fbssfi 23731 . . . . . . . . . . . 12 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
625, 61sylan 580 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
631ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
641adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝐿 ∈ (Fil‘𝑋))
6547adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
66 filtop 23749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
671, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋𝐿)
6867, 5, 243jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
70 ssfg 23766 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
715, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
7271sselda 3949 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
73 eqid 2730 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑌filGen𝐵) = (𝑌filGen𝐵)
7473imaelfm 23845 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
7569, 72, 74syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
7665, 75sseldd 3950 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
7776adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐹𝑠) ∈ 𝐿)
7864, 77jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
79 filin 23748 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
80793expa 1118 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8178, 80sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8281adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
83 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝑋)
84 elin 3933 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥))
8524, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Fun 𝐹)
86 fvelima 6929 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹𝑤 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤)
8786ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Fun 𝐹 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
8885, 87syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
8988ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
9085ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → Fun 𝐹)
91 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → 𝑠𝑧)
92 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦𝑠)
93 ssel2 3944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑠𝑧𝑦𝑠) → 𝑦𝑧)
9491, 92, 93syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦𝑧)
9585ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → Fun 𝐹)
96 fbelss 23727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
975, 96sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑠𝐵) → 𝑠𝑌)
9824fdmd 6701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → dom 𝐹 = 𝑌)
9998adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
10097, 99sseqtrrd 3987 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
101100adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝑠 ⊆ dom 𝐹)
102101sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
103 fvimacnv 7028 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
10495, 102, 103syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
105104biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
106105impr 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦 ∈ (𝐹𝑥))
107106ad2ant2rl 749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝐹𝑥))
10894, 107elind 4166 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝑧 ∩ (𝐹𝑥)))
109 inss2 4204 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∩ (𝐹𝑥)) ⊆ (𝐹𝑥)
110 cnvimass 6056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹𝑥) ⊆ dom 𝐹
111109, 110sstri 3959 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹
112 funfvima2 7208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun 𝐹 ∧ (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹) → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
113111, 112mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝐹 → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
11490, 108, 113sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
115114anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
116115expr 456 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
117 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ 𝑥𝑤𝑥))
118 eleq1 2817 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ↔ 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
119117, 118imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑤 → (((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))) ↔ (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
120116, 119syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
121120rexlimdva 3135 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (∃𝑦𝑠 (𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
12289, 121syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
123122impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → ((𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
12484, 123biimtrid 242 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
125124adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
126125ssrdv 3955 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
127 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡)
128126, 127sstrd 3960 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)
129 filss 23747 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ (Fil‘𝑋) ∧ (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿𝑡𝑋 ∧ ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)) → 𝑡𝐿)
13063, 82, 83, 128, 129syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝐿)
131130exp32 420 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
132 ineq2 4180 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹𝑥) → (𝑧𝑤) = (𝑧 ∩ (𝐹𝑥)))
133132imaeq2d 6034 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹𝑥) → (𝐹 “ (𝑧𝑤)) = (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
134133sseq1d 3981 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 ↔ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡))
135134imbi1d 341 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝑥) → (((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
136131, 135syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
137136rexlimdva 3135 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
138137rexlimdvaa 3136 . . . . . . . . . . . 12 (𝜑 → (∃𝑠𝐵 𝑠𝑧 → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))))
139138imp 406 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑠𝐵 𝑠𝑧) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14062, 139syldan 591 . . . . . . . . . 10 ((𝜑𝑧 ∈ (fi‘𝐵)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14160, 140sylbid 240 . . . . . . . . 9 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
142141impr 454 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
143 imaeq2 6030 . . . . . . . . . 10 (𝑠 = (𝑧𝑤) → (𝐹𝑠) = (𝐹 “ (𝑧𝑤)))
144143sseq1d 3981 . . . . . . . . 9 (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝑧𝑤)) ⊆ 𝑡))
145144imbi1d 341 . . . . . . . 8 (𝑠 = (𝑧𝑤) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
146142, 145syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
147146rexlimdvva 3195 . . . . . 6 (𝜑 → (∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14848, 55, 1473jaod 1431 . . . . 5 (𝜑 → ((𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14946, 148sylbid 240 . . . 4 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
150149rexlimdv 3133 . . 3 (𝜑 → (∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
151150impcomd 411 . 2 (𝜑 → ((𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡) → 𝑡𝐿))
15244, 151impbid 212 1 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cun 3915  cin 3916  wss 3917  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  ficfi 9368  fBascfbas 21259  filGencfg 21260  Filcfil 23739   FilMap cfm 23827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1o 8437  df-2o 8438  df-en 8922  df-fin 8925  df-fi 9369  df-fbas 21268  df-fg 21269  df-fil 23740  df-fm 23832
This theorem is referenced by:  fmfnfm  23852
  Copyright terms: Public domain W3C validator