MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem4 Structured version   Visualization version   GIF version

Theorem fmfnfmlem4 23844
Description: Lemma for fmfnfm 23845. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem4 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝐹,𝑠,𝑡,𝑥   𝐿,𝑠,𝑡,𝑥   𝜑,𝑠,𝑡,𝑥   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑥

Proof of Theorem fmfnfmlem4
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . 4 (𝜑𝐿 ∈ (Fil‘𝑋))
2 filelss 23739 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡𝐿) → 𝑡𝑋)
32ex 412 . . . 4 (𝐿 ∈ (Fil‘𝑋) → (𝑡𝐿𝑡𝑋))
41, 3syl 17 . . 3 (𝜑 → (𝑡𝐿𝑡𝑋))
5 fmfnfm.b . . . . . . . . 9 (𝜑𝐵 ∈ (fBas‘𝑌))
6 mptexg 7195 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
7 rnexg 7878 . . . . . . . . . . 11 ((𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
86, 7syl 17 . . . . . . . . . 10 (𝐿 ∈ (Fil‘𝑋) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
91, 8syl 17 . . . . . . . . 9 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
10 unexg 7719 . . . . . . . . 9 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
115, 9, 10syl2anc 584 . . . . . . . 8 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
12 ssfii 9370 . . . . . . . . 9 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1312unssbd 4157 . . . . . . . 8 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1411, 13syl 17 . . . . . . 7 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1514adantr 480 . . . . . 6 ((𝜑𝑡𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
16 eqid 2729 . . . . . . . . 9 (𝐹𝑡) = (𝐹𝑡)
17 imaeq2 6027 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
1817rspceeqv 3611 . . . . . . . . 9 ((𝑡𝐿 ∧ (𝐹𝑡) = (𝐹𝑡)) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
1916, 18mpan2 691 . . . . . . . 8 (𝑡𝐿 → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
2019adantl 481 . . . . . . 7 ((𝜑𝑡𝐿) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
21 elfvdm 6895 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
225, 21syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ dom fBas)
23 cnvimass 6053 . . . . . . . . . . 11 (𝐹𝑡) ⊆ dom 𝐹
24 fmfnfm.f . . . . . . . . . . 11 (𝜑𝐹:𝑌𝑋)
2523, 24fssdm 6707 . . . . . . . . . 10 (𝜑 → (𝐹𝑡) ⊆ 𝑌)
2622, 25ssexd 5279 . . . . . . . . 9 (𝜑 → (𝐹𝑡) ∈ V)
2726adantr 480 . . . . . . . 8 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ V)
28 eqid 2729 . . . . . . . . 9 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2928elrnmpt 5922 . . . . . . . 8 ((𝐹𝑡) ∈ V → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3027, 29syl 17 . . . . . . 7 ((𝜑𝑡𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3120, 30mpbird 257 . . . . . 6 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
3215, 31sseldd 3947 . . . . 5 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
33 ffun 6691 . . . . . . . 8 (𝐹:𝑌𝑋 → Fun 𝐹)
34 ssid 3969 . . . . . . . 8 (𝐹𝑡) ⊆ (𝐹𝑡)
35 funimass2 6599 . . . . . . . 8 ((Fun 𝐹 ∧ (𝐹𝑡) ⊆ (𝐹𝑡)) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3633, 34, 35sylancl 586 . . . . . . 7 (𝐹:𝑌𝑋 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3724, 36syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3837adantr 480 . . . . 5 ((𝜑𝑡𝐿) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
39 imaeq2 6027 . . . . . . 7 (𝑠 = (𝐹𝑡) → (𝐹𝑠) = (𝐹 “ (𝐹𝑡)))
4039sseq1d 3978 . . . . . 6 (𝑠 = (𝐹𝑡) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡))
4140rspcev 3588 . . . . 5 (((𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∧ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4232, 38, 41syl2anc 584 . . . 4 ((𝜑𝑡𝐿) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4342ex 412 . . 3 (𝜑 → (𝑡𝐿 → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡))
444, 43jcad 512 . 2 (𝜑 → (𝑡𝐿 → (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
45 elfiun 9381 . . . . . 6 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
465, 9, 45syl2anc 584 . . . . 5 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
47 fmfnfm.fm . . . . . . 7 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
485, 1, 24, 47fmfnfmlem1 23841 . . . . . 6 (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
495, 1, 24, 47fmfnfmlem3 23843 . . . . . . . 8 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
5049eleq2d 2814 . . . . . . 7 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
5128elrnmpt 5922 . . . . . . . . 9 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
5251elv 3452 . . . . . . . 8 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
535, 1, 24, 47fmfnfmlem2 23842 . . . . . . . 8 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5452, 53biimtrid 242 . . . . . . 7 (𝜑 → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5550, 54sylbid 240 . . . . . 6 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5649eleq2d 2814 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
5728elrnmpt 5922 . . . . . . . . . . . . 13 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
5857elv 3452 . . . . . . . . . . . 12 (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥))
5956, 58bitrdi 287 . . . . . . . . . . 11 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
6059adantr 480 . . . . . . . . . 10 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
61 fbssfi 23724 . . . . . . . . . . . 12 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
625, 61sylan 580 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
631ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
641adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝐿 ∈ (Fil‘𝑋))
6547adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
66 filtop 23742 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
671, 66syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑋𝐿)
6867, 5, 243jca 1128 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
6968adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
70 ssfg 23759 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
715, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
7271sselda 3946 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
73 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑌filGen𝐵) = (𝑌filGen𝐵)
7473imaelfm 23838 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
7569, 72, 74syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
7665, 75sseldd 3947 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
7776adantrr 717 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐹𝑠) ∈ 𝐿)
7864, 77jca 511 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
79 filin 23741 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
80793expa 1118 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8178, 80sylan 580 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8281adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
83 simprr 772 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝑋)
84 elin 3930 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥))
8524, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → Fun 𝐹)
86 fvelima 6926 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Fun 𝐹𝑤 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤)
8786ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Fun 𝐹 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
8885, 87syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
8988ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
9085ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → Fun 𝐹)
91 simplrr 777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → 𝑠𝑧)
92 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦𝑠)
93 ssel2 3941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑠𝑧𝑦𝑠) → 𝑦𝑧)
9491, 92, 93syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦𝑧)
9585ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → Fun 𝐹)
96 fbelss 23720 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
975, 96sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑠𝐵) → 𝑠𝑌)
9824fdmd 6698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → dom 𝐹 = 𝑌)
9998adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
10097, 99sseqtrrd 3984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
101100adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝑠 ⊆ dom 𝐹)
102101sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
103 fvimacnv 7025 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
10495, 102, 103syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
105104biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
106105impr 454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦 ∈ (𝐹𝑥))
107106ad2ant2rl 749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝐹𝑥))
10894, 107elind 4163 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝑧 ∩ (𝐹𝑥)))
109 inss2 4201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∩ (𝐹𝑥)) ⊆ (𝐹𝑥)
110 cnvimass 6053 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐹𝑥) ⊆ dom 𝐹
111109, 110sstri 3956 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹
112 funfvima2 7205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Fun 𝐹 ∧ (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹) → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
113111, 112mpan2 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Fun 𝐹 → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
11490, 108, 113sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
115114anassrs 467 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
116115expr 456 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
117 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ 𝑥𝑤𝑥))
118 eleq1 2816 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ↔ 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
119117, 118imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝑦) = 𝑤 → (((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))) ↔ (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
120116, 119syl5ibcom 245 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
121120rexlimdva 3134 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (∃𝑦𝑠 (𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
12289, 121syld 47 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
123122impd 410 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → ((𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
12484, 123biimtrid 242 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
125124adantrl 716 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
126125ssrdv 3952 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
127 simprl 770 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡)
128126, 127sstrd 3957 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)
129 filss 23740 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ (Fil‘𝑋) ∧ (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿𝑡𝑋 ∧ ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)) → 𝑡𝐿)
13063, 82, 83, 128, 129syl13anc 1374 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝐿)
131130exp32 420 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
132 ineq2 4177 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹𝑥) → (𝑧𝑤) = (𝑧 ∩ (𝐹𝑥)))
133132imaeq2d 6031 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹𝑥) → (𝐹 “ (𝑧𝑤)) = (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
134133sseq1d 3978 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 ↔ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡))
135134imbi1d 341 . . . . . . . . . . . . . . 15 (𝑤 = (𝐹𝑥) → (((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
136131, 135syl5ibrcom 247 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
137136rexlimdva 3134 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
138137rexlimdvaa 3135 . . . . . . . . . . . 12 (𝜑 → (∃𝑠𝐵 𝑠𝑧 → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))))
139138imp 406 . . . . . . . . . . 11 ((𝜑 ∧ ∃𝑠𝐵 𝑠𝑧) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14062, 139syldan 591 . . . . . . . . . 10 ((𝜑𝑧 ∈ (fi‘𝐵)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14160, 140sylbid 240 . . . . . . . . 9 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
142141impr 454 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
143 imaeq2 6027 . . . . . . . . . 10 (𝑠 = (𝑧𝑤) → (𝐹𝑠) = (𝐹 “ (𝑧𝑤)))
144143sseq1d 3978 . . . . . . . . 9 (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝑧𝑤)) ⊆ 𝑡))
145144imbi1d 341 . . . . . . . 8 (𝑠 = (𝑧𝑤) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
146142, 145syl5ibrcom 247 . . . . . . 7 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
147146rexlimdvva 3194 . . . . . 6 (𝜑 → (∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14848, 55, 1473jaod 1431 . . . . 5 (𝜑 → ((𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14946, 148sylbid 240 . . . 4 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
150149rexlimdv 3132 . . 3 (𝜑 → (∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
151150impcomd 411 . 2 (𝜑 → ((𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡) → 𝑡𝐿))
15244, 151impbid 212 1 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cun 3912  cin 3913  wss 3914  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  ficfi 9361  fBascfbas 21252  filGencfg 21253  Filcfil 23732   FilMap cfm 23820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1o 8434  df-2o 8435  df-en 8919  df-fin 8922  df-fi 9362  df-fbas 21261  df-fg 21262  df-fil 23733  df-fm 23825
This theorem is referenced by:  fmfnfm  23845
  Copyright terms: Public domain W3C validator