MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmfnfmlem4 Structured version   Visualization version   GIF version

Theorem fmfnfmlem4 21995
Description: Lemma for fmfnfm 21996. (Contributed by Jeff Hankins, 19-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypotheses
Ref Expression
fmfnfm.b (𝜑𝐵 ∈ (fBas‘𝑌))
fmfnfm.l (𝜑𝐿 ∈ (Fil‘𝑋))
fmfnfm.f (𝜑𝐹:𝑌𝑋)
fmfnfm.fm (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
Assertion
Ref Expression
fmfnfmlem4 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝐹,𝑠,𝑡,𝑥   𝐿,𝑠,𝑡,𝑥   𝜑,𝑠,𝑡,𝑥   𝑋,𝑠,𝑡,𝑥   𝑌,𝑠,𝑡,𝑥

Proof of Theorem fmfnfmlem4
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fmfnfm.l . . . 4 (𝜑𝐿 ∈ (Fil‘𝑋))
2 filelss 21890 . . . . 5 ((𝐿 ∈ (Fil‘𝑋) ∧ 𝑡𝐿) → 𝑡𝑋)
32ex 399 . . . 4 (𝐿 ∈ (Fil‘𝑋) → (𝑡𝐿𝑡𝑋))
41, 3syl 17 . . 3 (𝜑 → (𝑡𝐿𝑡𝑋))
5 fmfnfm.b . . . . . . . . 9 (𝜑𝐵 ∈ (fBas‘𝑌))
6 mptexg 6719 . . . . . . . . . . 11 (𝐿 ∈ (Fil‘𝑋) → (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
7 rnexg 7338 . . . . . . . . . . 11 ((𝑥𝐿 ↦ (𝐹𝑥)) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
86, 7syl 17 . . . . . . . . . 10 (𝐿 ∈ (Fil‘𝑋) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
91, 8syl 17 . . . . . . . . 9 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V)
10 unexg 7199 . . . . . . . . 9 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
115, 9, 10syl2anc 575 . . . . . . . 8 (𝜑 → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V)
12 ssfii 8574 . . . . . . . . 9 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → (𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1312unssbd 4001 . . . . . . . 8 ((𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))) ∈ V → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1411, 13syl 17 . . . . . . 7 (𝜑 → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
1514adantr 468 . . . . . 6 ((𝜑𝑡𝐿) → ran (𝑥𝐿 ↦ (𝐹𝑥)) ⊆ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
16 eqid 2817 . . . . . . . . 9 (𝐹𝑡) = (𝐹𝑡)
17 imaeq2 5686 . . . . . . . . . 10 (𝑥 = 𝑡 → (𝐹𝑥) = (𝐹𝑡))
1817rspceeqv 3531 . . . . . . . . 9 ((𝑡𝐿 ∧ (𝐹𝑡) = (𝐹𝑡)) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
1916, 18mpan2 674 . . . . . . . 8 (𝑡𝐿 → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
2019adantl 469 . . . . . . 7 ((𝜑𝑡𝐿) → ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥))
21 elfvdm 6450 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑌) → 𝑌 ∈ dom fBas)
225, 21syl 17 . . . . . . . . . 10 (𝜑𝑌 ∈ dom fBas)
23 cnvimass 5709 . . . . . . . . . . 11 (𝐹𝑡) ⊆ dom 𝐹
24 fmfnfm.f . . . . . . . . . . 11 (𝜑𝐹:𝑌𝑋)
2523, 24fssdm 6282 . . . . . . . . . 10 (𝜑 → (𝐹𝑡) ⊆ 𝑌)
2622, 25ssexd 5013 . . . . . . . . 9 (𝜑 → (𝐹𝑡) ∈ V)
2726adantr 468 . . . . . . . 8 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ V)
28 eqid 2817 . . . . . . . . 9 (𝑥𝐿 ↦ (𝐹𝑥)) = (𝑥𝐿 ↦ (𝐹𝑥))
2928elrnmpt 5587 . . . . . . . 8 ((𝐹𝑡) ∈ V → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3027, 29syl 17 . . . . . . 7 ((𝜑𝑡𝐿) → ((𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 (𝐹𝑡) = (𝐹𝑥)))
3120, 30mpbird 248 . . . . . 6 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)))
3215, 31sseldd 3810 . . . . 5 ((𝜑𝑡𝐿) → (𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))))
33 ffun 6269 . . . . . . . 8 (𝐹:𝑌𝑋 → Fun 𝐹)
34 ssid 3831 . . . . . . . 8 (𝐹𝑡) ⊆ (𝐹𝑡)
35 funimass2 6193 . . . . . . . 8 ((Fun 𝐹 ∧ (𝐹𝑡) ⊆ (𝐹𝑡)) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3633, 34, 35sylancl 576 . . . . . . 7 (𝐹:𝑌𝑋 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3724, 36syl 17 . . . . . 6 (𝜑 → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
3837adantr 468 . . . . 5 ((𝜑𝑡𝐿) → (𝐹 “ (𝐹𝑡)) ⊆ 𝑡)
39 imaeq2 5686 . . . . . . 7 (𝑠 = (𝐹𝑡) → (𝐹𝑠) = (𝐹 “ (𝐹𝑡)))
4039sseq1d 3840 . . . . . 6 (𝑠 = (𝐹𝑡) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡))
4140rspcev 3513 . . . . 5 (((𝐹𝑡) ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ∧ (𝐹 “ (𝐹𝑡)) ⊆ 𝑡) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4232, 38, 41syl2anc 575 . . . 4 ((𝜑𝑡𝐿) → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)
4342ex 399 . . 3 (𝜑 → (𝑡𝐿 → ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡))
444, 43jcad 504 . 2 (𝜑 → (𝑡𝐿 → (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
45 elfiun 8585 . . . . . . 7 ((𝐵 ∈ (fBas‘𝑌) ∧ ran (𝑥𝐿 ↦ (𝐹𝑥)) ∈ V) → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
465, 9, 45syl2anc 575 . . . . . 6 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) ↔ (𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤))))
47 fmfnfm.fm . . . . . . . 8 (𝜑 → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
485, 1, 24, 47fmfnfmlem1 21992 . . . . . . 7 (𝜑 → (𝑠 ∈ (fi‘𝐵) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
495, 1, 24, 47fmfnfmlem3 21994 . . . . . . . . 9 (𝜑 → (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) = ran (𝑥𝐿 ↦ (𝐹𝑥)))
5049eleq2d 2882 . . . . . . . 8 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
51 vex 3405 . . . . . . . . . 10 𝑠 ∈ V
5228elrnmpt 5587 . . . . . . . . . 10 (𝑠 ∈ V → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥)))
5351, 52ax-mp 5 . . . . . . . . 9 (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑠 = (𝐹𝑥))
545, 1, 24, 47fmfnfmlem2 21993 . . . . . . . . 9 (𝜑 → (∃𝑥𝐿 𝑠 = (𝐹𝑥) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5553, 54syl5bi 233 . . . . . . . 8 (𝜑 → (𝑠 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5650, 55sylbid 231 . . . . . . 7 (𝜑 → (𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
5749eleq2d 2882 . . . . . . . . . . . . 13 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ 𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥))))
58 vex 3405 . . . . . . . . . . . . . 14 𝑤 ∈ V
5928elrnmpt 5587 . . . . . . . . . . . . . 14 (𝑤 ∈ V → (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
6058, 59ax-mp 5 . . . . . . . . . . . . 13 (𝑤 ∈ ran (𝑥𝐿 ↦ (𝐹𝑥)) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥))
6157, 60syl6bb 278 . . . . . . . . . . . 12 (𝜑 → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
6261adantr 468 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ↔ ∃𝑥𝐿 𝑤 = (𝐹𝑥)))
63 fbssfi 21875 . . . . . . . . . . . . 13 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
645, 63sylan 571 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ (fi‘𝐵)) → ∃𝑠𝐵 𝑠𝑧)
651ad3antrrr 712 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝐿 ∈ (Fil‘𝑋))
661adantr 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝐿 ∈ (Fil‘𝑋))
6747adantr 468 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → ((𝑋 FilMap 𝐹)‘𝐵) ⊆ 𝐿)
68 filtop 21893 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐿 ∈ (Fil‘𝑋) → 𝑋𝐿)
691, 68syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝑋𝐿)
7069, 5, 243jca 1151 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
7170adantr 468 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠𝐵) → (𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋))
72 ssfg 21910 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐵 ∈ (fBas‘𝑌) → 𝐵 ⊆ (𝑌filGen𝐵))
735, 72syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐵 ⊆ (𝑌filGen𝐵))
7473sselda 3809 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠𝐵) → 𝑠 ∈ (𝑌filGen𝐵))
75 eqid 2817 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑌filGen𝐵) = (𝑌filGen𝐵)
7675imaelfm 21989 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑋𝐿𝐵 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐵)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
7771, 74, 76syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐵))
7867, 77sseldd 3810 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠𝐵) → (𝐹𝑠) ∈ 𝐿)
7978adantrr 699 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐹𝑠) ∈ 𝐿)
8066, 79jca 503 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿))
81 filin 21892 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
82813expa 1140 . . . . . . . . . . . . . . . . . . . 20 (((𝐿 ∈ (Fil‘𝑋) ∧ (𝐹𝑠) ∈ 𝐿) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8380, 82sylan 571 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
8483adantr 468 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ∈ 𝐿)
85 simprr 780 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝑋)
86 elin 4006 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) ↔ (𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥))
8724, 33syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → Fun 𝐹)
88 fvelima 6479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Fun 𝐹𝑤 ∈ (𝐹𝑠)) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤)
8988ex 399 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Fun 𝐹 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
9087, 89syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
9190ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → ∃𝑦𝑠 (𝐹𝑦) = 𝑤))
9287ad3antrrr 712 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → Fun 𝐹)
93 simplrr 787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → 𝑠𝑧)
94 simprl 778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦𝑠)
95 ssel2 3804 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑠𝑧𝑦𝑠) → 𝑦𝑧)
9693, 94, 95syl2an 585 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦𝑧)
9787ad2antrr 708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → Fun 𝐹)
98 fbelss 21871 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝐵 ∈ (fBas‘𝑌) ∧ 𝑠𝐵) → 𝑠𝑌)
995, 98sylan 571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑠𝐵) → 𝑠𝑌)
10024fdmd 6275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜑 → dom 𝐹 = 𝑌)
101100adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑠𝐵) → dom 𝐹 = 𝑌)
10299, 101sseqtr4d 3850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑠𝐵) → 𝑠 ⊆ dom 𝐹)
103102adantrr 699 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → 𝑠 ⊆ dom 𝐹)
104103sselda 3809 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → 𝑦 ∈ dom 𝐹)
105 fvimacnv 6564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((Fun 𝐹𝑦 ∈ dom 𝐹) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
10697, 104, 105syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
107106biimpd 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥𝑦 ∈ (𝐹𝑥)))
108107impr 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → 𝑦 ∈ (𝐹𝑥))
109108ad2ant2rl 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝐹𝑥))
11096, 109elind 4008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → 𝑦 ∈ (𝑧 ∩ (𝐹𝑥)))
111 inss2 4041 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑧 ∩ (𝐹𝑥)) ⊆ (𝐹𝑥)
112 cnvimass 5709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐹𝑥) ⊆ dom 𝐹
113111, 112sstri 3818 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹
114 funfvima2 6728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((Fun 𝐹 ∧ (𝑧 ∩ (𝐹𝑥)) ⊆ dom 𝐹) → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
115113, 114mpan2 674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Fun 𝐹 → (𝑦 ∈ (𝑧 ∩ (𝐹𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
11692, 110, 115sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ (𝑡𝑋 ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥))) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
117116anassrs 455 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ (𝑦𝑠 ∧ (𝐹𝑦) ∈ 𝑥)) → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
118117expr 446 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
119 eleq1 2884 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ 𝑥𝑤𝑥))
120 eleq1 2884 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐹𝑦) = 𝑤 → ((𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ↔ 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
121119, 120imbi12d 335 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐹𝑦) = 𝑤 → (((𝐹𝑦) ∈ 𝑥 → (𝐹𝑦) ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))) ↔ (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
122118, 121syl5ibcom 236 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) ∧ 𝑦𝑠) → ((𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
123122rexlimdva 3230 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (∃𝑦𝑠 (𝐹𝑦) = 𝑤 → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
12491, 123syld 47 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ (𝐹𝑠) → (𝑤𝑥𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))))
125124impd 398 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → ((𝑤 ∈ (𝐹𝑠) ∧ 𝑤𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
12686, 125syl5bi 233 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ 𝑡𝑋) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
127126adantrl 698 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝑤 ∈ ((𝐹𝑠) ∩ 𝑥) → 𝑤 ∈ (𝐹 “ (𝑧 ∩ (𝐹𝑥)))))
128127ssrdv 3815 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
129 simprl 778 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡)
130128, 129sstrd 3819 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)
131 filss 21891 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ (Fil‘𝑋) ∧ (((𝐹𝑠) ∩ 𝑥) ∈ 𝐿𝑡𝑋 ∧ ((𝐹𝑠) ∩ 𝑥) ⊆ 𝑡)) → 𝑡𝐿)
13265, 84, 85, 130, 131syl13anc 1484 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) ∧ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡𝑡𝑋)) → 𝑡𝐿)
133132exp32 409 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
134 ineq2 4018 . . . . . . . . . . . . . . . . . . 19 (𝑤 = (𝐹𝑥) → (𝑧𝑤) = (𝑧 ∩ (𝐹𝑥)))
135134imaeq2d 5690 . . . . . . . . . . . . . . . . . 18 (𝑤 = (𝐹𝑥) → (𝐹 “ (𝑧𝑤)) = (𝐹 “ (𝑧 ∩ (𝐹𝑥))))
136135sseq1d 3840 . . . . . . . . . . . . . . . . 17 (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 ↔ (𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡))
137136imbi1d 332 . . . . . . . . . . . . . . . 16 (𝑤 = (𝐹𝑥) → (((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧 ∩ (𝐹𝑥))) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
138133, 137syl5ibrcom 238 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑠𝐵𝑠𝑧)) ∧ 𝑥𝐿) → (𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
139138rexlimdva 3230 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑠𝐵𝑠𝑧)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
140139rexlimdvaa 3231 . . . . . . . . . . . . 13 (𝜑 → (∃𝑠𝐵 𝑠𝑧 → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))))
141140imp 395 . . . . . . . . . . . 12 ((𝜑 ∧ ∃𝑠𝐵 𝑠𝑧) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14264, 141syldan 581 . . . . . . . . . . 11 ((𝜑𝑧 ∈ (fi‘𝐵)) → (∃𝑥𝐿 𝑤 = (𝐹𝑥) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
14362, 142sylbid 231 . . . . . . . . . 10 ((𝜑𝑧 ∈ (fi‘𝐵)) → (𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
144143impr 444 . . . . . . . . 9 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
145 imaeq2 5686 . . . . . . . . . . 11 (𝑠 = (𝑧𝑤) → (𝐹𝑠) = (𝐹 “ (𝑧𝑤)))
146145sseq1d 3840 . . . . . . . . . 10 (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 ↔ (𝐹 “ (𝑧𝑤)) ⊆ 𝑡))
147146imbi1d 332 . . . . . . . . 9 (𝑠 = (𝑧𝑤) → (((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)) ↔ ((𝐹 “ (𝑧𝑤)) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
148144, 147syl5ibrcom 238 . . . . . . . 8 ((𝜑 ∧ (𝑧 ∈ (fi‘𝐵) ∧ 𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))))) → (𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
149148rexlimdvva 3237 . . . . . . 7 (𝜑 → (∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
15048, 56, 1493jaod 1546 . . . . . 6 (𝜑 → ((𝑠 ∈ (fi‘𝐵) ∨ 𝑠 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥))) ∨ ∃𝑧 ∈ (fi‘𝐵)∃𝑤 ∈ (fi‘ran (𝑥𝐿 ↦ (𝐹𝑥)))𝑠 = (𝑧𝑤)) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
15146, 150sylbid 231 . . . . 5 (𝜑 → (𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥)))) → ((𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿))))
152151rexlimdv 3229 . . . 4 (𝜑 → (∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡 → (𝑡𝑋𝑡𝐿)))
153152com23 86 . . 3 (𝜑 → (𝑡𝑋 → (∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡𝑡𝐿)))
154153impd 398 . 2 (𝜑 → ((𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡) → 𝑡𝐿))
15544, 154impbid 203 1 (𝜑 → (𝑡𝐿 ↔ (𝑡𝑋 ∧ ∃𝑠 ∈ (fi‘(𝐵 ∪ ran (𝑥𝐿 ↦ (𝐹𝑥))))(𝐹𝑠) ⊆ 𝑡)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3o 1099  w3a 1100   = wceq 1637  wcel 2157  wrex 3108  Vcvv 3402  cun 3778  cin 3779  wss 3780  cmpt 4934  ccnv 5323  dom cdm 5324  ran crn 5325  cima 5327  Fun wfun 6105  wf 6107  cfv 6111  (class class class)co 6884  ficfi 8565  fBascfbas 19962  filGencfg 19963  Filcfil 21883   FilMap cfm 21971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-oadd 7810  df-er 7989  df-en 8203  df-fin 8206  df-fi 8566  df-fbas 19971  df-fg 19972  df-fil 21884  df-fm 21976
This theorem is referenced by:  fmfnfm  21996
  Copyright terms: Public domain W3C validator